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Ion and Electron Acceleration During 
Substorms

March 1, 2008
• Observations – large substorm with ion acceleration.
• Approach – data analysis, MHD simulations and large scale 

kinetic simulations.
• Energization – non-adiabatic motion in stretched tail fields

February 15, 2008
• Observations – substorm dipolarization with plasma waves and 

rapid electron acceleration.
• Approach – data analysis and MHD simulation.
• Energization – role of plasma waves.
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Goals and Approach

• Understand the energization of particles seen by
THEMIS in the inner plasma sheet during the
March 1, 2008 substorm.

• Follow trajectories of solar wind ions and
ionospheric ions within the electric and magnetic
fields from a global magnetohydrodynamic
simulation of this substorm.
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Observations

P3 Density from Sheet Detector, 
Comparison with Simulation
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Energy of Solar Wind H+ Ions in the Current Sheet
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Particles and Fields P3 in the Current Sheet
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Particles and Fields P3 in the Current Sheet
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Particles and Kappa P3 Solar Wind H+ 

"Wall" Region
[Ashour-Abdalla et al., 1992]

Kappa =(Rcurv /ρmax)½





Summary
• During   March 1, 2008 substorm THEMIS observed 

high energies (~500keV) ions in the near-Earth tail. 

• We used particle trajectory calculations in the electric 
and magnetic fields from a global MHD simulation and 
found that H+ ions are accelerated to the observed 
values. 

• Simulations indicate that O+ ions contribute 
significantly to the particles observed by THEMIS.

• The most energetic H+ ions were also accelerated in a 
region called the “wall” where κ≈1.

• The observed rapid energy gain requires both non-
adiabatic motion and large total electric fields.      



Ion and Electron Acceleration During 
Substorms

March 1, 2008
• Observations – large substorm with ion acceleration.
• Approach – data analysis, MHD simulations and large scale 

kinetic simulations.
• Energization – non-adiabatic motion in stretched tail fields

February 15, 2008
• Observations – substorm dipolarization with plasma waves and 

rapid electron acceleration.
• Approach – data analysis and MHD simulation.
• Energization – role of plasma waves.



AE Index and Spacecraft Positions on February 15, 2008
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THEMIS E Data on February 15, 2008
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Snapshots of Bz and Flows in the Maximum Pressure Plane
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THEMIS E Data on February 15, 2008
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Wave Form THEMIS E
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Power Spectrum THEMIS E
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Power Spectrum THEMIS E (wave burst data)
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Wave angle 
~ 85 degree

Wave Form THEMIS E (between 1200 and 3000 Hz)
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Observed Waves

• Ion cyclotron – electromagnetic, oblique
• Lower hybrid – electrostatic, oblique
• Upper hybrid – electrostatic, oblique 
• Langmuir waves? – electrostatic, 

parallel,   but above instrument cutoff



• Ion cyclotron – ion beam 
• Lower hybrid – transverse current
• Upper hybrid – df/dv⊥ > 0 
• Langmuir waves? – electron beam

Possible Free Energy Sources



Pitch Angle Distribution THEMIS E
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Pitch Angle Distribution THEMIS A
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Pitch Angle Distribution THEMIS D
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Summary
• The THEMIS spacecraft observed a series of earthward moving 

dipolarizations.  In our MHD simulation, the dipolarizations occurred 
when narrow bands of earthward flow from tail reconnection were 
directed at the spacecraft.

• The dipolarizations were accompanied by intense electromagnetic 
and electrostatic waves and electron acceleration.  Very large 
(~60mV/m) electric field pulses are found in a thin region at the edge 
of the dipolarization front.

• A number of wave modes were observed including ion cyclotron, 
lower hybrid, and upper hybrid waves. Possible free energy sources 
including ion beams, transverse currents,  and                   

• Adiabatic processes (Betatron and Fermi) cannot account for the 
observed heating. Waves also are needed. 

0>⊥dvdf
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Summary
• The THEMIS spacecraft observed a series of earthward moving 

dipolarizations.  In our MHD simulation, the dipolarizarions occurred 
when narrow bands of earthward flow from tail reconnection were 
directed at the spacecraft.

• The dipolarizations were accompanied by intense electromagnetic 
and electrostatic waves and electron acceleration.  Very large 
(~60mV/m) electric field pulses are found in a thin region at the edge 
of the dipolarization front.

• A number of wave modes were observed including ion cyclotron, 
lower hybrid, whistler and upper hybrid waves. Possible free energy 
sources including ion beams, transverse currents, electron beams,  
and                   .

• Adiabatic processes (Betatron and Fermi) cannot account for the 
observed heating. Waves also are needed. 
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Betatron and Fermi Acceleration
• We compared peak B, T⊥ and T|| values from the first and second 

structures encountered by the THEMIS spacecraft.

• If the plasma and magnetic field were convected directly from one 
spacecraft another spacecraft, conservation of μ between implies 
that T⊥/B should be constant (betatron acceleration.)  This was true 
for structure 2 encountering THEMIS A and then THEMIS E.

• The peak magnetic field at E was 26 nT and the temperature was 
7000 keV while at A the corresponding numbers were 34 nT and 
8500 keV.  This gives T⊥/B = 250 nT/eV at E and 269 nT/eV 
consistent with conservation of μ between the two observed peaks.



Betatron and Fermi Acceleration
• We then computed the quantity T||S2 for the two peaks, which should 

be approximately constant if  the J is conserved (Fermi 
acceleration.)

• We used the MHD magnetic field to compute the field line lengths of 
a field line that convected from A to E.

• While the field line increased in length from 36.0 to 36.7 RE the 
parallel temperature increased from 7000 the 9000 eV which is not 
consistent with Fermi acceleration.

• This result suggests that wave particle interactions are heating the 
particles in the parallel direction or isotropizing the distribution.



Summary of MHD Results
• Reconnection in the tail created a series of narrow 
earthward flow channels.

• During this event the flow channels were directed 
at the three THEMIS satellites.

• As the earthward convecting flux tubes reached 
the THEMIS location they became dipole-like.

• A series of dipolarizations resulted – THEMIS E 
and A observed both but THEMIS D only observed 
the second.
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