

On the theoretical basis of kappa distributions

George Livadiotis and David J. McComas

Southwest Research Institute San Antonio, Texas USA

glivadiotis@swri.edu david.mccomas@swri.org

The distribution of the published papers in Space Physics and Astrophysics since 1980 that are related to kappa distributions (Title / Abstract).

 We show how kappa distributions arise naturally from Tsallis Statistical Mechanics

- We expose the general relation between kappa and the spectral indices commonly used to parameterize space plasmas
- We develop the concept of physical temperature for stationary states out of equilibrium

- Space plasmas are non-equilibrium systems, tending slowly to stationary states.
- A system whose distribution function has stabilized to a Boltzmann-Maxwell distribution would be in thermal equilibrium.
- However, which would be the expression of probability distribution for systems relaxing into

stationary states out of equilibrium?

- Entropy: From the Greek word "Εντροπία"
- Ev-: in, towards + $-T\rho o\pi \dot{\eta}$: a turning, change
- Towards a turning \Rightarrow Entropy increases
- When the probability distribution is stabilized⇒ Entropy is maximized

Equilibrium ...

Boltzmann-Gibbs Statistical Mechanics

Boltzmann-Gibbs Statistical Mechanics

- Discrete probability distribution $\{p_k\}_{k=1}^W : p_1, p_2, ..., p_W$, associated with a conservative physical system of energy spectrum, $\{\varepsilon_k\}_{k=1}^W : \varepsilon_1, \varepsilon_2, ..., \varepsilon_W$.
- Entropy: $S^{BG}(\{p_k\}_{k=1}^W) = -\sum_{k=1}^W p_k \ln(p_k)$
- Entropy maximization: $\frac{\partial}{\partial p_j} S^{BG} (\{p_k\}_{k=1}^W) = 0 \quad \forall j = 1,...,W$
- $\{p_k\}_{k=1}^W$: Not independent variables
 - (i) Normalization, $\sum_{k=1}^{W} p_k = 1$
 - (ii) Known internal energy U, $\sum_{k=1}^{W} p_k \varepsilon_k = U$

The Lagrange method involves maximizing the functional

$$G(\{p_k\}_{k=1}^W) = S(\{p_k\}_{k=1}^W) + \lambda_1 \sum_{k=1}^W p_k + \lambda_2 \sum_{k=1}^W p_k \ \varepsilon_k$$

$$-\lambda_2 \equiv \beta \equiv \frac{1}{k_B T}$$

$$\Rightarrow$$

Lagrangian temperature
$$-\lambda_2 \equiv \beta \equiv \frac{1}{k_B T}$$
 \Rightarrow $p_k \sim e^{\lambda_2 \varepsilon_k} \equiv e^{-\frac{\varepsilon_k}{k_B T}}$

Continuous energy spectrum

$$p(\varepsilon;T) \sim e^{-\frac{\varepsilon}{k_B T}}$$

Maxwellian...

$$\varepsilon = \frac{1}{2} \mu \cdot u^2$$

$$p(u;\theta) \sim e^{-(u/\theta)^2}$$

$$p(u;\theta) \sim e^{-(u/\theta)^2}$$
, $\theta = \sqrt{\frac{2k_B T}{\mu}}$

Out of Equilibrium ...

Empirically ...

Kappa distribution: An empirical approach

- The low-energy (L-E) region of ion distributions is primarily Maxwellian. $p_{\rm L-E}(\vec{u}) \sim e^{-\left(|\vec{u}-\vec{u}_b|/\theta\right)^2}$
- The high-energy (H-E) (or suprathermal) region is non-Maxwellian: power-law tails. $p_{\text{H-E}}(\vec{u}) \sim |\vec{u} \vec{u}_b|^{-2(\gamma + 1)}$
 - \vec{u} and \vec{u}_b : ion and bulk flow velocities.
- Vasyliūnas (1968): An empirical functional form for describing the distribution over the whole energy spectrum, both the L-E Maxwellian core and the H-E power-law tail.

$$p(\vec{u};\theta_{\kappa};\kappa) \sim \left[1 + \frac{1}{\kappa} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\kappa}}\right)^2\right]^{-\kappa - 1}$$

Kappa distribution: An empirical approach

- Why up to
$$-(\kappa + 1)$$
?
$$p(\vec{u}; \theta_{\kappa}; \kappa) \sim \left[1 + \frac{1}{\kappa} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\kappa}}\right)^2\right]^{-\kappa - 1}$$

Because of the coincidence of the spectral index γ with κ .

$$j_{H-E}(\varepsilon) \sim \varepsilon^{\frac{1}{2}} \cdot p_{H-E}(\varepsilon) \cdot g_{E}(\varepsilon) \sim \varepsilon^{-\kappa} \equiv \varepsilon^{-\gamma} \qquad \Longrightarrow \qquad \kappa = \gamma$$
in 3-dim systems

- What if the power was $-\kappa$? $p(\vec{u};\theta_{\kappa}^*;\kappa^*) \sim \left[1 + \frac{1}{\kappa^*} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\kappa}^*}\right)^2\right]^{-\kappa}$

Then we have the same coincidence, $\kappa^* = \gamma$.

$$j_{\text{H-E}}(\varepsilon) \sim \varepsilon^{\frac{1}{2}} \cdot p_{\text{H-E}}(\varepsilon) \cdot g_{\text{E}}(\varepsilon) \sim \varepsilon^{-\kappa^*} \equiv \varepsilon^{-\gamma} \implies \kappa^* = \gamma$$
in 1-dim systems

Relation between the 2 kinds

• 1st kind
$$p^{(1)}\left(\vec{u};\theta_{\text{eff}};\kappa^*\right) \sim \left[1 + \frac{1}{\kappa^* - \frac{5}{2}} \cdot \left(\frac{\left|\vec{u} - \vec{u}_b\right|}{\theta_{\text{eff}}}\right)^2\right]^{-\kappa^*}$$

• 2nd kind
$$p^{(2)}(\vec{u};\theta_{\text{eff}};\kappa) \sim \left[1 + \frac{1}{\kappa - \frac{3}{2}} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\text{eff}}}\right)^2\right]^{-\kappa - 1}$$

where
$$\theta_{\text{eff}} \equiv \sqrt{\frac{2k_B T_{\text{KE}}}{\mu}}$$
, T_{KE} Thermal parameters independent of κ , κ^*

independent of κ , κ^*

Hence:
$$\kappa^* = \kappa + 1$$

Out of Equilibrium ... Tsallis Statistical Mechanics

Generalized Statistical Mechanics

Tsallis Entropy

$$S_{q}(\{p_{k}\}_{k=1}^{W};q) = \frac{1 - \sum_{k=1}^{W} p_{k}^{q}}{q - 1}$$

$$S_{q}(q \to 1) = -\sum_{k=1}^{W} p_{k} \ln(p_{k}) \equiv S^{BG}$$

$$S_q(q \rightarrow 1) = -\sum_{k=1}^W p_k \ln(p_k) \equiv S^{BG}$$

Escort expectation value

$$U_q = \frac{\sum_{k=1}^{W} p_k^{\ q} \varepsilon_k}{\sum_{k=1}^{W} p_k^{\ q}}$$

$${U}_q = \sum_{k=1}^W P_k oldsymbol{arepsilon}_k$$

$$U_{q} = \frac{\sum_{k=1}^{W} p_{k}^{q} \varepsilon_{k}}{\sum_{k=1}^{W} p_{k}^{q}} \quad \text{or} \quad U_{q} = \sum_{k=1}^{W} P_{k} \varepsilon_{k} \quad U_{q}(q \to 1) = \sum_{k=1}^{W} p_{k} \varepsilon_{k} = U$$

$$P_{k} = \frac{p_{k}^{q}}{\sum_{k=1}^{W} p_{k}^{q}} \iff p_{k} = \frac{P_{k}^{1/q}}{\sum_{k=1}^{W} P_{k}^{1/q}}$$
The expect probabilities observe the system after its

The escort probabilities characterize the system after its relaxation in stationary states out of equilibrium.

Tsallis Statistical Mechanics

•Entropy maximization:
$$\frac{\partial}{\partial p_j} S_q(\{p_k\}_{k=1}^W; q) = 0 \quad \forall j = 1, ..., W$$

- Constraints:
 - (i) Normalization, $\sum_{k=1}^{W} p_k = 1$
 - (ii) Known internal energy, U_q , $\sum_{k=1}^W P_k \varepsilon_k = U_q$

$$\sum\nolimits_{k=1}^{W} P_k \,\, \varepsilon_k = U_q$$

The Lagrange method involves maximizing the functional

$$G_q(\{p_k\}_{k=1}^W;q) = S_q(\{p_k\}_{k=1}^W;q) + \lambda_1 \sum_{k=1}^W p_k + \lambda_2 \sum_{k=1}^W P_k \varepsilon_k$$

leading to

$$P(\varepsilon; T_q; q) \sim p(\varepsilon; T_q; q)^q \sim \left[1 - (1 - q) \cdot \frac{\varepsilon - U_q}{k_B T_q}\right]^{\frac{q}{1 - q}}$$

$$T_q \equiv T \cdot \sum_{k=1}^{W} p_k^q$$
 T_q : Physical temperature

$$\varepsilon = \frac{1}{2} \mu \cdot (\vec{u} - \vec{u}_b)^2$$

$$\varepsilon = \frac{1}{2}\mu \cdot (\vec{u} - \vec{u}_b)^2 \qquad U_q = \left\langle \frac{1}{2}\mu \cdot u^2 \right\rangle_q = \frac{3}{2} \cdot k_B T_q \qquad \Longrightarrow$$

Tsallis-Maxwellian distribution

$$P(\varepsilon; T_q; q) \sim \left[1 - \frac{2(1-q)}{5-3q} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\text{eff}}}\right)^2\right]^{\frac{q}{1-q}}$$

$$\kappa \equiv \frac{1}{q-1}$$
 \Longrightarrow

kappa distribution
$$p^{(2)}(\vec{u};\theta_{\text{eff}};\kappa) \sim \left[1 + \frac{1}{\kappa - \frac{3}{2}} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\text{eff}}}\right)^2\right]^{-\kappa - 1}$$

$$\kappa = \kappa^* - 1 = \gamma = \gamma_E - \frac{1}{2} = \frac{1}{2} \gamma_V$$

 $\gamma_{\rm V}$, $\gamma_{\rm E}$, γ : exponents in power laws of velocities, energy, flux

	Publication	$\gamma_{ m E}$	$\gamma_{ m v}$	γ	к	κ^*	Comments
1	Decker et al. [2005]	2.13	3.26	1.63	1.63	2.63	2 nd kappa distribution
2	Fisk & Gloecker [2006]	2	3	1.5	1.5	2.5	Suprathermal power-law tail
3	Dialynas et al. [2009]	>3	>5	>2.5	>2.5	>3.5	1 st kappa distribution
4	Dayeh et al. [2009]	<3	<5	<2.5	<2.5	<3.5	Suprathermal power-law tail

The physical temperature T_a

3 definitions of temperature that coincide in equilibrium

$$T_{S} \equiv \left(\frac{\partial S}{\partial U}\right)^{-1}$$
 $T \equiv -\frac{1}{k_{B}\lambda_{2}}$ $T_{\text{KE}} \equiv \frac{2U}{3k_{B}}$

$$T \equiv -\frac{1}{k_B \lambda_2}$$

$$T_{\mathrm{KE}} \equiv \frac{2U}{3k_B}$$

In Tsallis Statistics, T_{KE} differs out of equilibrium

$$T = T_S \equiv \left(\frac{\partial S_q}{\partial U_q}\right)^{-1}$$

$$T \neq T_{\text{KE}} \equiv \frac{2U_q}{3k_B}$$

... but coincides with the physical temperature T_{α}

$$T_{q} = T_{S} \equiv \left(\frac{\partial S_{q}}{\partial U_{q}}\right)^{-1} \left[1 + (1 - q) \cdot S_{q} / k_{B}\right] \qquad T_{q} = T_{KE} \equiv \frac{2U_{q}}{3k_{B}}$$

$$T_q = T_{\text{KE}} \equiv \frac{2U_q}{3k_B}$$

Now the Lagrangian T is expressed in terms of T_a , $T=T(T_a;q)$

Two hypothetical routes of transient (metastable) stationary states towards the equilibrium

The relation of physical temperature T_q with the Lagrangian temperature T

Conclusions

- We showed how kappa distributions arise naturally from Tsallis Statistical Mechanics
- We developed the concept of physical temperature out of equilibrium, which differs significantly from the classical, equilibrium temperature
- We extracted the general relation between the basic types of kappa distributions and the spectral indices commonly used to parameterize space $\kappa = \kappa^* 1 = \gamma = \gamma_E \frac{1}{2} = \frac{1}{2} \gamma_V$

- Tsallis Statistical Mechanics offer a consistent theoretical framework for describing complex systems in stationary states out of equilibrium.
- The Tsallis-like Canonical probability distribution is derived by following along the Gibbs path, by extremizing the Tsallis entropy under constraints.
- This Canonical probability distribution reads the kappa distribution that describes the solar plasmas.
- Both the two kinds of kappa distributions can describe solar plasmas. However the 2nd kind is primary. It is connected with the escort probability and the physical temperature.