

On the theoretical basis of kappa distributions

George Livadiotis and David J. McComas

Southwest Research InstituteSan Antonio, Texas USA glivadiotis@swri.edu david.mccomas@swri.org

The distribution of the published papers in Space Physics and Astrophysics since 1980 that are related to kappa distributions (Title / Abstract).

z **We show how kappa distributions arise naturally from Tsallis Statistical Mechanics**

z **We expose the general relation between kappa and the spectral indices commonly used to parameterize space plasmas**

z **We develop the concept of physical temperature for stationary states out of equilibrium**

- Space plasmas are non-equilibrium systems, tending slowly to stationary states.
- A system whose distribution function has stabilized to a Boltzmann-Maxwell distribution would be in

thermal equilibrium.

- However, which would be the expression of probability distribution for systems relaxing into **stationary states out of equilibrium** ?
- z **Entropy**: From the Greek word "**Eντροπία**"
- z **Εν-** : in , towards + **-Tροπή**: a turning, change
- \bullet Towards a turning \Rightarrow Entropy increases
- When the probability distribution is stabilized \Leftrightarrow Entropy is maximized

Equilibrium …

Boltzmann-Gibbs Statistical Mechanics

Boltzmann-Gibbs Statistical Mechanics

 \bullet **•** Discrete probability distribution $\{p_k\}_{k=1}^W : p_1, p_2, ..., p_W$, associated with a conservative physical system of energy spectrum, $\left\{ \varepsilon_k \right\}_{k=1}^W : \varepsilon_1, \varepsilon_2, ..., \varepsilon_W$.

• Entropy:
$$
S^{BG}(\{p_k\}_{k=1}^W) = -\sum_{k=1}^W p_k \ln(p_k)
$$

 \bullet Entropy maximization:

$$
\frac{\partial}{\partial p_j} S^{BG} (\lbrace p_k \rbrace_{k=1}^W) = 0 \quad \forall \ j = 1, ..., W
$$

• $\{p_k\}_{k=1}^W$: Not independent variables $\{p_k\}_{k=1}^W$

 $-$ (i) Normalization, $\sum_{k=1}^{W} p_k = 1$

(ii) Known internal energy *U*,

$$
\boxed{\sum_{k=1}^W p_k \; \varepsilon_k = U}
$$

The Lagrange method involves maximizing the functional

$$
G(\{p_k\}_{k=1}^W) = S(\{p_k\}_{k=1}^W) + \lambda_1 \sum_{k=1}^W p_k + \lambda_2 \sum_{k=1}^W p_k \varepsilon_k
$$

Lagrangian $-\lambda_2 \equiv \beta \equiv$

$$
\beta \equiv \frac{1}{k_B T} \qquad \Longrightarrow \qquad p_k \sim e^{\lambda_2 \varepsilon_k} \equiv e^{-\frac{\varepsilon_k}{k_B T}}
$$

Continuous energy spectrum

2

$$
p(\varepsilon;T)\sim e^{-\frac{\varepsilon}{k_BT}}
$$

,

Maxwellian…

$$
\varepsilon = \frac{1}{2} \mu \cdot u^2
$$

$$
p(u; \theta) \sim e^{-(u/\theta)^2}
$$

μ $\theta \equiv \sqrt{\frac{2k_B T}{L}}$

Out of Equilibrium …

Empirically …

Kappa distribution: An empirical approach The low-energy (L-E) region of ion distributions is primarily Maxwellian. $\left(\left| \vec{u} \!-\!\vec{u}_b \right| \!/\theta \right)^{\!2}$ $p_{\rm L-E}^{}(\vec u) \!\sim e^{-(|\vec u - \vec u_b|/\theta)}$

 The high-energy (H-E) (or suprathermal) region is non-Maxwellian: power-law tails. $2(\gamma +1)$ $p_{\text{H-E}}(\vec{u}) \sim |\vec{u} - \vec{u}_b|^{-2(\gamma + \vec{b})}$

 \vec{u} and \vec{u}_h : ion and bulk flow velocities.

 Vasyliũnas (1968): An empirical functional form for describing the distribution over the whole energy spectrum, both the L-E Maxwellian core and the H-E power-law tail.

$$
p(\vec{u}; \theta_K; \kappa) \sim \left[1 + \frac{1}{\kappa} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_K}\right)^2\right]^{-\kappa - 1}
$$

Kappa distribution: An empirical approach $-$ Why up to $-(\kappa + 1)$? $p(\vec{u}; \theta_{\kappa}; \kappa)$ $\left(\left| \vec{u} - \vec{u}_b \right| \right)^2 \right]^{-\kappa-1}$ $(\theta_{\kappa};\kappa)$ ~ | 1+ $p(\vec{u}; \theta_{\kappa}; \kappa) \sim \left[1 + \frac{1}{\kappa} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\kappa}}\right)^2\right]^{-\kappa-1}$

Because of the coincidence of the spectral index *γ* with *^κ.* $j_{\rm H-E}(\varepsilon)\sim \varepsilon^{\frac{1}{2}}\cdot p_{\rm H-E}(\varepsilon)\cdot g_{\rm E}(\varepsilon)\sim \varepsilon^{-\kappa}\equiv \varepsilon^{-\gamma}\qquad \Longrightarrow \qquad \mathcal{K} \equiv \mathcal{V}$ in 3-dim systems

- What if the power was – κ ? $p(\vec{u}; \theta_{\kappa}^*; \kappa^*)$ *2 $*$ α^* ** $\left| {\theta _\kappa ^ * ; \kappa ^ * } \right| \sim \left| {1 + \frac{1}{\lambda }} \right|$ κ κ $\left|\theta_{\kappa}^{*}$; $\kappa^{*}\right| \sim \left|1+\frac{1}{\kappa^{*}}\cdot\right|\frac{1}{\theta}$ − $p(\vec{u}; \theta_{\kappa}^*; \kappa^*)$ ~ $\left[1 + \frac{1}{\kappa^*} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\kappa}^*}\right)^2\right]$

Then we have the same coincidence, $\kappa^* = \gamma$. $\kappa_{-{\rm E}}(\mathcal{E})\!\sim\! \mathcal{E}^{\, \bar{z}}\cdot p_{{\rm H}-{\rm E}}(\mathcal{E})\!\cdot\! \mathcal{G}_{{\rm E}}(\mathcal{E})\!\sim\! \mathcal{E}^{-\kappa}\ \equiv\! \mathcal{E}^{-\gamma}$ \cdot $p_{\rm H-E}(\mathcal{E})\cdot g_{\rm E}(\mathcal{E})\sim \mathcal{E}$ = $\frac{1}{2}$, n (c), α (c), e^{-K^*} $j_{\rm H-E}(\varepsilon)\!\sim\! \varepsilon^{\frac{1}{2}}\!\cdot p_{\rm H-E}(\varepsilon)\!\cdot\! g_{\rm E}(\varepsilon)\!\sim\! \varepsilon^{\!-\!\kappa^*}\!\equiv\!\varepsilon^{\!-\!\gamma}\qquad\Longrightarrow\qquad\!\!\kappa^*\!\!\!=\!\gamma$ * in 1-dim systems

7-Jul-09

Relation between the 2 kinds
\n**0 1st kind**
$$
p^{(1)}(\vec{u}; \theta_{\text{eff}}; \kappa^*) \sim \left[1 + \frac{1}{\kappa^* - \frac{5}{2}} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\text{eff}}}\right)^2\right]^{-\kappa^*}
$$

\n**2nd kind** $p^{(2)}(\vec{u}; \theta_{\text{eff}}; \kappa) \sim \left[1 + \frac{1}{\kappa - \frac{3}{2}} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\text{eff}}}\right)^2\right]^{-\kappa - 1}$
\nwhere $\theta_{\text{eff}} = \sqrt{\frac{2k_B T_{\text{KE}}}{\mu}}$, T_{KE} Thermal parameters independent of κ , κ^*
\nHence: $\kappa^* = \kappa + 1$

Out of Equilibrium …

Tsallis Statistical Mechanics

Generalized Statistical Mechanics **• Tsallis Entropy**

$$
S_q(\{p_k\}_{k=1}^W; q) = \frac{1 - \sum_{k=1}^W p_k^{q}}{q-1}
$$

$$
S_q(q \to 1) = -\sum_{k=1}^W p_k \ln(p_k) \equiv S^{BG}
$$

Escort expectation value

The escort probabilities characterize the system after its relaxation in stationary states out of equilibrium.

7-Jul-09

Tsallis Statistical Mechanics

Entropy maximization:

$$
\left|\frac{\partial}{\partial p_j} S_q\Big(\{p_k\}_{k=1}^W; q\Big) = 0\right| \quad \forall
$$

zConstraints:

(i) Normalization, $\sum_{k=1}^{m} p_k = 1$ $\sum_{k=1}^{W} p_k =$ $_{=1}P_k =$ *W* $_{k=1}P_k$

(ii) Known internal energy, U_q , $\sum_{k=1}^{N}$ = *W* $\int_{k=1}^{N} P_k \; \mathcal{E}_k = U_q$

The Lagrange method involves maximizing the functional

$$
G_q(\{p_k\}_{k=1}^W; q) = S_q(\{p_k\}_{k=1}^W; q) + \lambda_1 \sum_{k=1}^W p_k + \lambda_2 \sum_{k=1}^W P_k \varepsilon_k
$$

leading to

$$
P(\varepsilon; T_q; q) \sim p(\varepsilon; T_q; q)^q \sim \left[1 - (1 - q) \cdot \frac{\varepsilon - U_q}{k_B T_q}\right]^{\frac{1}{1 - q}}
$$

T_a: Physical temperature

7-Jul-09

 \equiv \bot \cdot

 $T_q \equiv T \cdot \sum p_k^q$

∑

*k*1

W

Livadiotis and McComas 14

q

 $j = 1, \ldots, W$

$$
\varepsilon = \frac{1}{2} \mu \cdot (\vec{u} - \vec{u}_b)^2 \qquad U_q = \left\langle \frac{1}{2} \mu \cdot u^2 \right\rangle_q = \frac{3}{2} \cdot k_B T_q \qquad \Longrightarrow
$$

Tsallis-Maxwellian distribution

$$
P\left(\varepsilon; T_q; q\right) \sim \left[1 - \frac{2(1-q)}{5-3q} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\text{eff}}}\right)^2\right]^{\frac{q}{1-q}}
$$

$$
\kappa \equiv \frac{1}{q-1} \quad \Longrightarrow \quad
$$

kappa distribution

$$
p^{(2)}(\vec{u};\theta_{\text{eff}};\kappa) \sim \left[1 + \frac{1}{\kappa - \frac{3}{2}} \cdot \left(\frac{|\vec{u} - \vec{u}_b|}{\theta_{\text{eff}}}\right)^2\right]^{-\kappa - 1}
$$

$$
\kappa = \kappa^* - 1 = \gamma = \gamma_E - \frac{1}{2} = \frac{1}{2}\gamma_V
$$

*γ*_V, *γ*_E, *γ*: exponents in power laws of velocities, energy, flux

7-Jul-09

The physical temperature T_q 3 definitions of temperature that coincide in equilibrium

$$
T_{\rm S} \equiv \left(\frac{\partial S}{\partial U}\right)^{-1} \qquad \qquad T \equiv -\frac{1}{k_B \lambda_2} \qquad T_{\rm KE} \equiv \frac{2U}{3k_B}
$$

In Tsallis Statistics, T_KE differs out of equilibrium

$$
T = T_S \equiv \left(\frac{\partial S_q}{\partial U_q}\right)^{-1}
$$

$$
T \neq T_{\text{KE}} \equiv \frac{2U_q}{3k_B}
$$

but coincides with the physical temperature T_a

$$
T_q = T_S \equiv \left(\frac{\partial S_q}{\partial U_q}\right)^{-1} \left[1 + (1 - q) \cdot S_q / k_B\right] \qquad T_q = T_{KE} \equiv \frac{2U_q}{3k_B}
$$

Now the Lagrangian *T* is expressed in terms of T_a , $T=T(T_a; q)$

Two hypothetical routes of transient (metastable) stationary states towards the equilibrium

The relation of physical temperature T_a with the Lagrangian temperature *T*

Conclusions

- z **We showed how kappa distributions arise naturally from Tsallis Statistical Mechanics**
- z **We developed the concept of physical temperature out of equilibrium, which differs significantly from the classical, equilibrium temperature**
- z **We extracted the general relation between the basic types of kappa distributions and the spectral indices commonly used to parameterize** space $\kappa = \kappa^* = 1$ $_{\rm 2}$ / V $\frac{1}{2} = \frac{1}{2}$ $_{E} - \frac{1}{2}$ $\kappa = \kappa^* - 1 = \gamma = \gamma_E - \frac{1}{2} = \frac{1}{2}\gamma$
- Tsallis Statistical Mechanics offer ^a consistent theoretical framework for describing complex systems in stationary states out of equilibrium.
- The Tsallis-like Canonical probability distribution is derived by following along the Gibbs path, by extremizing the Tsallis entropy under constraints.
- This Canonical probability distribution reads the kappa distribution that describes the solar plasmas.
- Both the two kinds of kappa distributions can describe solar plasmas. However the $2nd$ kind is primary. It is connected with the escort probability and the physical temperature.