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Motivation

•Regions of thermal activity 

•Nonlinearity 

•Dissipative mechanisms

EIT/SOHO

UKAEA/Culham MAST

Covers plasmas on all scales from the 
astrophysical down to the laboratory. 

•Solar coronal phenomena 

•ELMs (Edge Localised Modes)

How do waves propagate through 
an active medium?



Contains all the non-adiabatic terms of 

-Thermal conduction

-Thermal instability. Field(1965)

Non-adiabaticity

The rate at which a plasma system 
radiates heat, is described by a general 
heat/loss function L.
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A typical profile of cooling functions (dashed line) 
Sutherland & Dopita (2003) and (solid) Mewe (1985)
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The simplest  mechanism
• Activity – Thermal overstability
• Nonlinearity
• Dissipation – high-frequency damping

The general evolutionary eqn for waves under such mechanisms is:

=   0

Balance of all 3 phases leads to stationary waves 
in particular Autowaves!

Self-Organisation

Activity
A(r,t,u)

Nonlinearity
F(∇u,u)

Dissipation
∇⋅(D⋅∇u)
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Autowaves propagate with characteristics (such as speed and amplitude etc) 
independently of the initial conditions, and are instead completely determined 
by the plasma properties.

The latter property could be exploited to be a non-invasive probe for 
plasmas



Evidence of autowaves in solar flares

Tsiklauri, D., Nakariakov, V. M., Kelly, A., Aschwanden,
M. J., and Arber, T. D.,Proceedings of SOHO-13, 2003.

Predicted 
thermal 
dampening

Numerical 
simulation of 
solar flare 
oscillations



We use the full time-dependent MHD equations.

MHD equations
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MHD equations + ∇⋅B=0 + p=RρT (equation of state)

Non-adiabatic terms



Assumptions of model

•We look at perturbations about the plasma equilibrium of the form  f = f0
+  f1(r,t). f0 denotes equilibrium.

- No background flows i.e. v0 = 0.

- Quadratic nonlinearity i.e. Ignore terms > O(f12).

We extend the model as studied by Nakariakov et al. (2000) to include 
arbitrary heating and radiative cooling.

B

θ

x

z

0
•We are looking for variations along the z-axis 
(∂/∂z) all other derivatives are ignored – 1D 
approximation e.g. along coronal loops.

•Assume optical thin radiation for L(ρ,p)

•We neglect effects due to stratification or 
structuring.

•All non-adiabatic effects are considered weak



The Full Evolutionary Equation

( )

,'2                                                             

'2

2

2

2

2

2

2

2
2

2

2
2

2

2
2

2

2

2

2

1

2

4

4
22

22

4
22

4

4

Ndt
z
V

zz
C

t
C

dt
z
V

z
C

tz
KLCV

z
CC

zt
CC

t

z

z

AzS

AzSSAzSA z

+⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

−

∂
∂

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

⎥⎦
⎤

⎢⎣
⎡

∂
∂

+=⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂∂

∂
+−

∂
∂

∫
∫

Combining the MHD equations & assumptions to reduce the set of equations 
to a single variable Vz.

CS = local acoustic speed, CA = Alfven speed, CAz = CA cos(θ)

All derivatives of the cooling function is evaluated at the plasma equilibrium 
e.g. L1

Nonlinear 
terms

.
2

)1(
4

)1(   
2

)1(

0

0

2

2

2

0
2

2

21

ργ
κγ

ρ
ργ

ρ
γ

R

L,L,
2

−
=

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂−

=⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂−

=

K

p
C

C
L

p
C

C
L S

S

S

S
Activity

Thermal conduction

Magnetoacoustic operator



The Full Evolutionary Equation
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Transforming to the frame where the evolution is taking place

 ζ = z – Ct and t =τ “slow-time”. Where C is the magnetoacoustic speed. We 
obtain the full nonlinear evolutionary equation:

The full evolutionary equation describes the evolution of magnetoacoustic 
waves propagating through an active medium i.e. α =-1.

- Is the generalised Burgers-Fischer Eqn 

- Also contains information about the fast mode

α,β = sgn( μ1 ,μ2)

Nonlinear 
terms

Activity

Thermal conduction



Normalizing the nonlinear evolutionary equation.

dimensionless k parameter

Near extrema of the cooling function k becomes large.

We are looking for stationary solutions so we need to prove the existence of 
the stationary wave → stationary reference frame s = ζ* - CEτ*. With  

ψ(s) = Vz*(s).

The Full Evolutionary Equation

02

2

2
**

*

*
*

*

*

*

*
=++

∂
∂

+
∂
∂

−
∂
∂

zz
z

z
zz kVVVVVV βα

ζζτ

,
|1| 

*   ,  
|1|

 *   ,|1|*
ZVzV

μχ
εζχ

μ
ζτμτ ===

.
||

||

1

2

εμ
χμ

=k

0)( 2

2

2

=−−−− ψβαψψψψ k
ds
dC

ds
d

E

Still need to solve for 3 parameters.. α, β and k..



Linear stability analysis

Linear growth rates 

for k=1.0

ψ ~ exp(δs)

Im{δ}

Re{δ}

(α,β) =(-1,-1)

(α,β) =(1,1)

(α,β) =(-1,1)

(α,β) =(1,-1)

-1/k
1/k

Require CE > 0



The stationary equation is given by

Vz must remain finite as s  →  ∞ this is only
possible if the activity and nonlinearity are 
balanced ∴CE = 0

Bounded solutions represent stationary 
waves

In the linear regime of cooling i.e. far from extrema 
(see fig) 

- Neglect higher order derivatives (μ2)

Autowaves
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Numerical simulation: Linear Autowave

A sine wave was used as our initial wave profile to undergo evolution for a variety 
of activity (μ1). The McCormack finite difference scheme was implemented as our 
PDE solver. Increasing activity → increasing amplitudes.

Shock-like – but 
finite thermal 
conduction 
prevents multi-
value solution.

μ1 = -0.4μ1 = -0.3

μ1 = -0.2μ1 = -0.1

Initial vs final amplitude

τ



we obtain a limit cycle solution i.e. the 
amplitude becomes constant

In the Nonlinear regime of heating/cooling i.e. 
far from extremums.

- Keep higher order derivatives in cooling 
function (μ2 

 ≠ 0)

Solitary Waves
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Fixed point 1/kα=1,β=-1,k=1.0 and CE = 0.87

Unstable

Stable Autowaves can exist in the finite 
nonlinear heating cooling regime

k<<1, α=-1 ∀ β and CE <<2

ψ



If we represent the stationary nonlinear differential equations in the form of a 
generic equation in terms of functions g(ψ) and f(ψ) we can solve using a 
perturbation method for

Differentiating the phase polynomial with respect  to s and substituting for

the equation of motion we obtain a set of ODES 

for determine the coefficients of the above polynomial.

Limit Cycles: Perturbation method
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Results of perturbation theory
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Solving term by term we obtain;
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Can determine relative velocity 
with the observed wavelengths, 
and vice versa.



Conclusions/Future

• Bounded  solutions for the a priori stationary nonlinear ODEs 
were found to exist analytical and via phase-plane analysis for 
both linear and non-linear thermally unstable regimes with the 
parameter range also determined

• Using the McCormack FD scheme the full time dependent 
evolutionary equation was solved numerically for both cooling 
regimes with stationary solutions satisfying the Autowave 
condition for a =-1. 

• Developed analytical solutions for the limit cycle scenario of 
stationary solutions with nonlinear H/C. 

• Develop a numerical code do solve the full evolutionary 
equation to retrieve both autosolitary and linear autowaves.

Long term goal:
• Extend to 2D to study ELMs within our theory framework.
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