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Outline

• INTRODUCTION
- Cellular Automata (CA) and Self-Organized Criticality (SOC)
- intended application: Reversed Field Pinch (RFP)

• The Extended CA model (X-CA) for the magnetic field in the RFP

• Results:
- the SOC magnetic topology, flux surfaces,
- current distribution
- the safety factor profile,
- magnetic energy dissipation



3

Cellular automata (CA)

• CA model complex systems, which consist in many sub-systems  that 
interact with each other

• CA discrete systems, defined on a discrete grid 
(1D, 2D, 3D)

• Usually one basic grid variable, scalar or vector
• Time evolution in terms of (usually local) rules

• application to systems where treatment with standard physical tools, 
such as DE, technically difficult due to complexity, e.g multi-scale 
physics
(earth-quake modeling, traffic jam, solar flares, … confined plasma)

• Idea: try to reduce physics to (physically still meaningful) evolution rules
• In a plasma the grid-size can correspond to a typical smallest turbulent 

eddie size, or roughly equal correlation length
• Reminiscent of numerical solution of DE on a grid, but

- grid-spacing not ‘infinitesimally’ small, just small 
- evolution according to rules, not solving DE

A
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Self-Organized Criticality (SOC)

• SOC is a possible dynamical state for complex systems, typically 
modeled in the form of a CA
with the following prerequisites:
(i)  the system is driven, stress (energy) is continuously added (in a 

systematic way)
(ii)  there is a local threshold dependent instability
(iii) when the threshold is exceeded locally, a second, local process

sets  in that relaxes the instability in the local neighbourhood
• (iv) the relaxation process possibly is able to trigger instabilities in the

neighbourhood of the primary, now relaxed instability
• Depending on the concrete rules, the system may reach the SOC state

(a)  chains of instabilities may occur that sweep through the entire
system (avalanches)

(b) statistical analysis of characteristics of the instabilities exhibit
power-law distributions: 
size and duration of relaxation event, released energy etc,
the system self-organizes, and 
the grid variable assume a characteristic global shape over the   
entire grid
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SOC models for confined plasma

• Several SOC models for confined plasmas have been suggested, which with 
success model some aspects of plasma turbulence [e.g. 2,3,4,5]

• These models all use the sand-pile analogy, with variables such as the local 
height of the sand-pile, height differences

• Our aim is to construct SOC models for the usual physical variables (here the 
magnetic field), which is physically interpretable in a consistent way.

• Here, we will introduce a SOC model for the magnetic field in the form of a CA
that is compatible with MHD

• Specific application is to the magnetic topology in the reversed field pinch
• Original SOC model by Bak, Tan & Wiesenfeld was 

a sand-pile model, i.e. the sand-pile as a paradigm for SOC
(grains of sand are dropped on a sand-pile until it gets
unstable and sand slides down)

• [1] Bak, P., Tang, C, Wiesenfeld, K., Phys. Rev. Lett. 59, 381 (1987)
[2] Carreras, BA, Lynch, VE, Newman, DE, Zaslavsky, GM, Phys. Rev. E 60,   4770

(2002)
[3] Sanchez, R., Newman, DE, Ferenbaugh, W, Carreras, BA, Lynch, VE, van Milligen,

BPh, Phys. Rev. E 66, 036124 (2002).
[4] Sattin, F, Baiesi, M, Phys. Rev. Lett. 96, 105005 (2006).
[5] Chapman, SC, Dendy, RO, Hnat, B, Phys. Rev. Lett. 86, 2814 (2001)
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Reversed field pinch (RFP)
• The RFP is a torus-shaped confinement 

device, as the tokamak, 
(poloidal field coils and currents create 
toroidal field,and induced toroidal current 
creates poloidal field)

• differences to tokamak:
- toroidal and poloidal field are of 
similar magnitude in the RFP
� safety factor smaller than one
- toroidal field changes direction (reverses � RFP) near the edge

• Characteristics:
after an initial transient phase, plasma settles to a preferred state,
where field profiles are independent of their time-history,
the plasma actually self-organizes to a relaxed state

• Experiments:
MST (USA), RFX (Italy), EXTRAP T2R (Sweden), TPE-RX (Japan)

• Theory of plasma relaxation originally developed by J.B. Taylor,
Phys. Rev. Lett. 33, 1139, (1974), Rev. Mod. Phys. 58, 741 (1986)]
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Plasma relaxation and self-organization: Theory

• Theory of plasma relaxation originally developed by J.B. Taylor,
Phys. Rev. Lett. 33, 1139, (1974), Rev. Mod. Phys. 58, 741 (1986)]

• From Taylors’ argumentation (based on induction equation, finite resistivity, 
and conservation of magnetic helicity) 
it follows that B must obey

� � B = μB
i.e. B is force-free, with μ constant throughout the volume

• For circular cross-section torus of large aspect ratio, a solution in the  
cylindrical limit is  

Btor = B0 J0(μ r),          Bpol = B0 J1(μ r),            Brad = 0 

with J0, J1 Bessel functions of the 1st kind
Bessel function model (BFM) 
(plasma neglected, refinements exist)

• In terms of the vector potential
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Plasma relaxation and self-organization: details
• Plasma in RFP settles to relaxed Taylor states
• In terms of the vector potential A (B = � �A),

the magnetic field evolves acc. to MHD induction equation
(here in Coulomb gauge, � �A = 0)
with v the velocity field, and η the resistivity

• If η = 0 (ideal MHD) then �fl A�B dV over a flux-tube is an invariant (helicity)
• Taylors’ argumentation:

(0) η is not always and everywhere small, but it can be finite, even if small and in 
localized region
(1 ) For small but finite η, �A�B dV over the entire plasma is an invariant
(2) The plasma settles to a minimum energy state, i.e. �(� ��A)2 dV assumes a 
minimum
(3) The constraint (1) and the condition (2) imply that B must obey � � B = μB
i.e. B is force-free, with μ constant throughout the volume

• For circular cross-section torus of large aspect ratio, a solution in the  cylindrical 
limit is  

Btor = B0 J0(μ r),          Bpol = B0 J1(μ r),            Brad = 0 
with J0, J1 Bessel functions of the 1st kind
Bessel function model (BFM) 
(plasma neglected, refinements exist)
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A SOC model for the magnetic topology in the 
reversed field pinch

• To construct a SOC model in the form of a CA, we have to specify
(1) the grid and the basic grid variable
(2) the loading/driving process
(3) the instability criterion
(4) the relaxation process

• For a CA, the loading and relaxation process must be expressed in terms of 
(local) evolution rules

• And, since we use natural variable (B): MHD compatibility must be ensured
• Our particular aim is to motivate all the elements of the model physically and to 

make the evolution rules and the instability criterion based on and compatible 
with the underlying physics

• Since we present a SOC model for the evolution of the magnetic field,
we in particular demand compatibility with MHD
e.g. the magnetic field should be divergence-free and always remain so 
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The model (1): MHD compatibility

• Our aim is to construct a SOC model for the magnetic field B in the form of a 
CA, in such a way as that it is also compatible with MHD:
� �B = 0 must hold, and the current must be determined as J = (c/4π) � � B

• Basic set-up in order to achieve MHD compatibility in the CA model:
(1) The CA grid variable is the vector potential A
(2) A evolves following CA rules for driving, instabilities, and relaxing (see 

below)
(3) In order to calculate derivatives, A is interpolated,

which allows to determine
B = � � A
J = (c/4π) � � B

in the usual MHD way, so that e.g. � �B = 0 is ensured (MHD compatibility)
• In this extended CA (X-CA), B is available every where in the simulation region, 

so that e.g. field lines can be drawn, or particles can be tracked
• In its simplest version, the MHD set-up does not interfere with the CA dynamics
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Intended Application: RFP
• As a guide for constructing the SOC model we need information on the topology 

as it is characteristic for the RFP (analytically or in numerical form,
including data from experiments)

• Here, we use the Bessel function model of the relaxed Taylor state, 
for simplicity

which corresponds to simple circular flux surfaces
• Second, we need the topology to be expressed in terms of our grid-variable, the 

vector potential A (such that B=� � A), which for the Bessel function model  
writes as 

and where Aθ yields the toroidal field Bφ, 
and Aφ yields the poloidal field Βθ

• Last, since physically the loading process is through driving the currents, we 
need the explicit connection of A to the current I � � � B

and where Aθ corresponds to the poloidal current  Iθ
and Aφ corresponds to  the toroidal current Iφ

r
R

Z

R0

φ

θ

Bθ

Bφ
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The model (1): initial set-up

• We concentrate on the 2-D poloidal 
plane and use a 2D grid for the CA

• The grid variable is the vector potential A
(as a 3D vector)

• As initial condition A(0), we can use any reasonable configuration, 
e.g. A(0) = 0, the state before the machine is switched on 

The model (2): The driving (loading) mechanism (i)
• Basic idea: Physically, in the RFP 

- the poloidal field coils and plasma currents generate the toroidal field,
- the induced (and self-generated) toroidal currents generate the poloidal field

• We implement this scenario and 
load the system  through driving the toroidal and the poloidal current,
- expressed though in rules and in terms of A
- and following the structure of the Bessel function model BFM

• In the BFM, two components of the current

so that driving Aφ corresponds to driving Iφ
driving Aθ corresponds to driving Iθ

A

Jφ

Jθ
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The model (3): the driving mechanism (ii)

• Physical driving scenario:
Iθ, Iφ are driven � Aθ , Aφ evolves such that Iθ, Iφ increase 

• In terms of CA rules
we systematically increase Aφ and Aθ by adding increments to them,

at one (usually random) grid site ij, at a time, 
(the toroidal/poloidal current increases because
Aφ/Aθ increases or its local curvature increases)

• The driving process must be such that the system goes to a RFP topology,
i.e. it must contain information about the RFP
(else the system moves to an arbitrary and physically irrelevant state!)
→ we thus let the increments be in the direction of 
the Bessel function model for the Taylor state,
with s a positive constant or random number 

i,j

Aφ
δΑφ

Jφ

Jθ
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The model (4): instabilities (i)
• Aim: implement a resistive, current driven instability
• The MHD induction equation in terms of the vector potential

with η the resistivity and χ an arbitrary function (Coulomb-gauge, � �A=0)
• Now I 	 -� 2A, and  if we neglect the convective term and χ, A evolves as 

� the current causes a diffusive evolution of A if η is not zero
• Physical scenario: threshold dependent local diffusion

(0) define a threshold Icr
(i) if the current is below the threshold, |I|<Icr, nothing happens, the plasma is 
just further driven (η = 0 in Εq. (1))
(ii) if the current exceeds the threshold, |I|>Icr, local diffusion sets in, according 
to Eq. (1), i.e. η has become finite (anomalous resistivity)


 this has to be translated to CA rules … 

Jφ Jcr

(1)
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The model (5): instabilities (ii)

• Simplification: we use a simple approximation dA to I:
We turn to Cartesian coordinates x,y,z,
and we use a difference scheme approximation for � 2 : 

• From I� -� 2A, we have e.g. Iy � -� 2 Ay

we change the factors and sign, and we define dAy,ij

The sum is over the four nearest neighbours (n.n.) in the 
2D rectangular grid
dAy,ij is the difference between the central value and 
the mean of its 4 neighbours.

• After all, we use dA:=(dAx,dAy,dAz) as approximation to the current I.
• We consider an instability to occur if 

(as a substitute for |I| > Icr)

• (In future versions, we will use directly I in the instability criterion, since it is 
consistently available)

n.n.

i,j 

r
R

Z

R0

φ

x

z

y
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The model (6): relaxation of the instability
• Physically, the local instability is relaxed since A locally diffuses according to 

the MHD induction equation,

the diffusion process removes the cause of the diffusion, the current evolves 
from super-critical to sub-critical:

|dAij| > Acr 
 relaxation (diffusion) 
 |dAij| < Acr

• We apply the redistribution rules in the local neighbourhood

which imply that dAij(t+1) = 0, i.e. the instability is relaxed
• This relaxation actually corresponds to a local flattening of the A profile, as it is 

typical for diffusion (and whereby ∑
i,j+n.n.

A
i,j+n.n.

is conserved)
• With the loading, instability criterion, and relaxation process, the CA/SOC 

model is completely specified
• Free parameter: threshold Acr

n.n.

i,j (central point)

(4 nearest neighbours)
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Results: Reaching the SOC state

• System starts from initial condition A(t=0) = 0 and evolves in time: 
after a transient, build-up phase, the SOC state as a dynamical equilibrium 
state is reached

• E.g. number of instabilities (and relaxations) per grid-scan as a function of 
time, mean |A|, mean |dA|, total energy in the system (∑ Bi,j

2)
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Also RFP is known to have transient phase before reaching a relaxed state



18

Structure of the magnetic field in SOC state

x

z
poloidal x-z-plane

Toroidal field Bφ:
Bessel function model               SOC model

Poloidal field Bθ:
Bessel function model                SOC model

• Bφ shows characteristic field reversal at the edges
• Βφ and Βθ are of similar magnitude
• Bφ and Bθ stay close to the characteristic shapes, they just slightly fluctuate 

about them (‘noise’)
• Br fluctuating, not zero, but roughly 10 times smaller than Bφ
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Flux surfaces

Bessel function  model                              during SOC (but stable)

Current distributions:
spatial organization, as in the BFM, with strong fluctuations

Circular flux surfaces Perturbed, deformed ‘circles’
(rectangular grid !)

-2000
-1000
 0
 1000
 2000
 3000
 4000

 400 450 500 550 600 650 700 750 800 850-200-150-100-50 0
 50 100 150 200

-2000
-1000

 0
 1000
 2000
 3000
 4000

Jφ

x
z

x

z

x

z

-500
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 400 450 500 550 600 650 700 750 800 850-200
-150

-100
-50

 0
 50

 100
 150

 200
-500

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Jθ

x
z



20

3D field line structures
assuming cylindrical symmetry, field lines can be followed in 3D space:
the field lines are well-behaved, they stay in the torus
(during SOC state, here in stable phase) 

a 3D, cylindrically symmetric
SOC model, where SOC is active 
in the perpendicular direction

x y

z

(for comparison: tokamak type 
topology)
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The safety factor profile

• From the evolution equation of the toroidal angle φ
of a field line
we can determine the safety factor qs as

• Safety factor smaller than 1,
• at the edge it is negative (field reversal)
• close to safety factor of Bessel function 

model

• Alternatively, assuming the flux-surfaces 
to be smooth:
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Flux surfaces during an avalanche

Instability, before relaxation          …                  and after relaxation

Basically, deformations are smoothed, flattened out,
which may lead to secondary deformations in the neighbourhood, i.e. new 
instabilities → chains of instabilities, as characteristic for SOC

x

z
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z
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Energy dissipation

• Magnetic energy defined as

so that the energy dissipated in relaxation events can be calculated as

(alternative forms in terms of current dissipation ηJ2 are possible in the 
model)

Energy per avalanche EA(t) Distribution of dissipated energy EA

slower than exponential 
fall-off exponential 

decay
intermittent, with large spikes
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Conclusion

• We introduced a magnetic topology in the SOC state for the reversed field pinch 
(RFP), on the base of a CA, which is compatible with MHD
(in the tokamak the magnetic field is strongly controlled and much less self-
organizing)

• the physics it implements is a magnetic field driven by toroidal and poloidal 
currents, with resistive instabilities that are relaxed in local diffusive events

• The SOC topology is qualitatively in agreement with topologies realized in the 
reversed field pinch
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The model (5): instabilities (ii)
• Simplification: we use a simple approximation dA to I:
• We turn to Cartesian coordinates x,y,z.

From I� -� 2A, we have e.g. Iy � -� 2 Ay
and we use a difference scheme approximation for � 2 Ay, 

we change the factors and sign, and we define dAy,ij

The sum is over the four nearest neighbours (n.n.) in the 
2D rectangular grid:
dAy,ij is the difference between the central value and 
the mean of its 4 neighbours.
After all, we use dA:=(dAx,dAy,dAz) as approximation to the current I.

• We consider an instability to occur if 
(as a substitute for |I| > Icr)

• (In future versions, we will use directly I in the instability criterion, since it is 
consistently available)

n.n.

i,j 
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The model (6): relaxation of the instability
• Physically, the local instability is relaxed since A locally diffuses according to 

the MHD induction equation,

the diffusion process removes the cause of the diffusion, the current evolves 
from super-critical to sub-critical:

|I| > Jcr 
 diffusion 
 |I| < Jcr

• The corresponding CA should mimic this in terms of dAij, the current substitute 
in the CA, 

|dAij| > Acr 
 relaxation 
 |dAij| < Acr

• We apply the redistribution rules in the local neighbourhood

which imply that dAij(t+1) = 0, i.e. the instability is relaxed
• This relaxation actually corresponds to a local flattening of the A profile, as it is 

typical for diffusion (and whereby ∑
i,j+n.n.

A
i,j+n.n.

is conserved)
• With the loading, instability criterion, and relaxation process, the CA/SOC 

model is completely specified
• Free parameter: threshold Acr

n.n.

i,j (central point)

(4 nearest neighbours)
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Stiffness of magnetic field profile

• Loading so-far was uniform, everywhere in the poloidal cross-section
• When driving the plasma only with an off-axis current, during the entire run (i.e. 

from the initial condition), again a SOC state is reached, with magnetic topology 
that basically is unrelated to the one in the RFP 
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Structure of the magnetic field in SOC state

x

z
poloidal x-z-plane

Toroidal field Bφ:
Bessel function model               SOC model

Poloidal field Bθ:
Bessel function model                SOC model    

• In SOC state, Bφ and Bθ stay close to the characteristic shapes 
of the BFM, they just slightly fluctuate about them (‘noise’)

• Bφ shows characteristic field reversal at the edges
• Bφ and Bθ are of similar magnitude
• Br fluctuating, not zero, but roughly 10 times smaller than Bφ

-2e-05
-1e-05
 0
 1e-05
 2e-05
 3e-05
 4e-05

 400 450 500 550 600 650 700 750 800 850-200-150-100-50 0 50 100 150 200

-2e-05
-1e-05

 0
 1e-05
 2e-05
 3e-05
 4e-05

x z

Bφ

-3e-05
-2e-05
-1e-05
 0
 1e-05
 2e-05
 3e-05
 4e-05
 5e-05
 6e-05
 7e-05

 400 450 500 550 600 650 700 750 800 850-200-150-100-50 0 50 100 150 200

-3e-05
-2e-05
-1e-05

 0
 1e-05
 2e-05
 3e-05
 4e-05
 5e-05
 6e-05
 7e-05

x z

Bφ

-1.5e-0
-1e-05
-5e-06
 0
 5e-06
 1e-05
 1.5e-0
 2e-05
 2.5e-0

 400 450 500 550 600 650 700 750 800 850-200-150-100-50 0 50 100 150 200

-1.5e-05
-1e-05
-5e-06

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05

x z

Bθ

 0
 5e-06
 1e-05
 1.5e-0
 2e-05
 2.5e-0
 3e-05
 3.5e-0
 4e-05

 400 450 500 550 600 650 700 750 800 850-200-150-100-50 0 50 100 150 200

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

x z

Bθ

-3e-05

-2e-05

-1e-05

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 400  450  500  550  600  650  700  750  800  850

’Bphi_r0.dat’
’Bphi_r.dat’

r

Bφ

radial profiles

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 400  450  500  550  600  650  700  750  800  850

’Btheta_r0.dat’
’Btheta_r.dat’

r

Bθ

radial profiles
Bessel

SOC



30

Flux surfaces during an avalanche
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