NONLINEAR PLASMA PHYSICS of the SOLAR CORONA

(Papadopoulos Conference, Halkidiki, June, 2009) Eric Priest (St Andrews)

Introduction: Dennis Papadopoulos

PhD Maryland 1968 --> NRL 10 years --> Maryland University

- (I 1969 coll^{less} shocks plasma complic^d --> MHD!)
 - * Dennis: microscopic plasma astrophysics: revolutionary ideas:
 - * strong turbulence in beam-plasma interactions
 --> understand type III radio bursts
 - * anomalous transport & resistivity in ionosphere
 - Collisionless shocks -->
 Earth's bow shock heat ions
 Supernova shocks heat electrons
 (at high M_A by 2 stream instab^y)

Approach: * Use state of art computing

* Highly creative ideas

IAU Symposium, Maryland, 1979 (Dennis - invited review on physics of type III radio bursts)

Symposium, Maryland, 1983

Loukas Vlahos

PhD Maryland 1979 with Kundu & Dennis P -> army -> Maryland (1981-1985) -> Thessaloniki

Annecy SMY Workshop (1981)

I and student Peter Cargill (Ph D 81) met Loukas --> Boulder 1982-84

Loukas persuaded Peter --> Maryland 1984-1992 , NRL -1996 --> IC 1996

Parents: hope children fall into good company !

Peter <--> Dennis P

"Dennis taught me all I know about kinetic plasma phys."

1. Introduction - The Corona

Yohkoh (5 arcsec): a dynamic magnetic world

- subtle interactions B & plasma

Coronal holes, Loops, X-ray bright pts

In Corona:

* Fundamental aspects plasma physics --

Dennis P (& students) ground-breaking contributions:

Particle acceleration, shock waves, instabilities, waves, reconnection

- * Subtle coupling: macroscopics (MHD) <----> microscopics (kinetic plasma physics)
- MHD: global environment --Microscopics -transport coefficients & particle acceleration

Hinode (1 arcsec)

Stunning detail on structure & dynamics

How is corona heated?

Waves or reconnection?

Low-freq. waves in loops [TRACE] -too weak to heat

Hinode --Chromospheric Spicules swaying

[Hansteen, Suemats

--?? Solar wind/ coronal heating

Reconnection - most likely in low corona

[30-sec cadence, 12-hour duration]

Quiet Sun: [XRT on Hinode]

Many brightenings

X-ray bright points above emerging and/or cancelling fields in photosphere

Hinode XRT - active region (Schmeltz et al, 2009; Reale et al, 2009) Observations inside white region

Plus emission (peak?) at 10-30 MK (?nanoflare

2.Coronal Heating Models Parker's classical Nanoflare Model by braiding (1972)

Initial B uniform / motions braiding

Numerical Experiment (Galsgaard) Braiding --> Current sheets grow --> turb. recon.

Active Region as a Nonlinear Driven Dissipative System (Vlahos, 2008):

* **Photospheric flux** elements: power-law distribution ($N = F^{-1.85}$)

[percolation model, Vlahos etal 1982]

- * In corona, observed nanoflares 10¹² have power-law distribution --
 - -- active region is in
 - **SOC** (self-organised critical) state,
 - as current sheets form at all scales and reconnect.
- * --> **stochastic acceleration** of p'cles in fractal E's

[Isliker et al, 1998; Isliker & Vlahos, 2003; Vlahos et al, 2004; Turkmani et al, 2006; Chapman, 1998..2009]

Hinode + SOHO (Parnell 2009):

3. Coronal Tectonics Model (development of Parker's model) 3.1 Effect "Magnetic Carpet"

Magnetic sources in surface are concentrated

From observed magnetograms construct coronal field lines

- each source connects to 8 others

TimeMoStallosedowes to recomment only 1.5 hours → more complexity & heating low down

? describe structure ? nature of reconnⁿ

Topology of X-point **Coronal Fields -**Complex In 2D --**Separatrix curves** In 3D --sunspots **Separatrix surfaces** -- intersect in Separator Reconnection can transfer flux In complex fields: **SKELETON--**Null point set separatrices

3D RECONNECTION--

- **Many New Features**
- In 2D, reconnection at **null points**, B = 0
- In 2D, magnetic lines slip through plasma --

but change connections only at X

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

In 3D, fieldlines continually change connections in

3D Reconnection

can occur at a null point or in absence of null (QSLs)

At Null -- 3 Types of Reconnection:

Spine reconnection
Fan reconnection
Separator reconnection

Numerical Experiment: "Simple" binary interaction of 2 photosph^c sources [Haynes, Parnell, Galsgaard, Priest]

- Two source fragments (of opposite polarity).
- + Overlying field
- Sources pass by each other

Numerical experiment

B-lines Current

How does reconnection occur? Nulls, sep^{rs}, nonnulls?

Construct magnetic skeleton -- movie

and + sources
 in overlying B.

→Separatrix surfaces.

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

Move sources --> flux tube joining sources

Movie of vertical cut across skeleton

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Cross-sections of Separatrix Surfaces

Coronal Tectonics Model (updated version of Parker nanoflare/topological dissipation) [Priest, Heyvaerts & Title]

- Each "Loop" --> surface in many sources
- Flux from each source separated by separatrix surfaces

As sources move --> J sheets on separatrices & separators --> Reconnect --> Heat

Corona filled w. myriads of J sheets, heating impulsively

Fundamental Flux Units

Intense tubes (B -- 1200 G, 100 km, 3 x 10¹⁷ Mx)

Single X-ray bright point --

100 sources 800 sep^{rs}, 1600 sep^{ces}

Each TRACE
 Loop - 10 finer loops

80 sep^{rs}, 160 sep^{ces}

TRACE Loop

Reaches to surface in many footpoints.

Separatrices form web in corona

4. If reconnection heats corona at many sheets,

- 1. How does energy spread out ?
 - -- conduction along B
 - -- reconnection jets
 - -- waves across B
 - -- fast particles
- 2. If reconnection time-dependent, how much energy liberated locally/globally?

Simple model problem [Longcope & Priest]

Magnetic field of Current Sheet in X

At large r,
$$B = B_0 + B_1$$

 $B_0 = -B'[y\hat{x} + x\hat{y}], \quad B_{1\phi} = \frac{I_0}{2\pi r}$ (line current), $\omega_A = \frac{B'}{\sqrt{4\pi\rho}}$
Lots of energy far from CS

Suppose sheet reconnects

Current (I) dissipates

Local process but has global consequences:

Decrease I --> B must change at large distances How ??

Model for effect of reconnection

Linearize about X-point \mathbf{B}_0 :

$$\frac{\partial \mathbf{B}_1}{\partial t} = \nabla \times (\mathbf{v}_1 \times \mathbf{B}_0) + \eta \nabla^2 \mathbf{B}_1,$$

$$\rho_0 \frac{\partial \mathbf{v}_1}{\partial t} = \mathbf{j}_1 \times \mathbf{B}_0.$$

$$\mathbf{B}_0 = -B'[y\hat{\mathbf{x}} + x\hat{\mathbf{y}}]$$

Assume $B_1 @$ t=0 is due to current sheet η is "turned on" current diffuses i.e. reconnection

Combine equations:

Put $rB_{1\phi} = I(r,t)$ = twice current enclosed in r

$$\frac{\partial^2 I}{\partial t^2} = \omega_A^2 r \frac{\partial}{\partial r} \left(r \frac{\partial I}{\partial r} \right) + \eta r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial^2 I}{\partial r \partial t} \right)$$

wave

$$\frac{\partial^2 I}{\partial t^2} = \omega_A^2 r \frac{\partial}{\partial t} \left(r \frac{\partial I}{\partial r} \right) + \eta r \frac{\partial}{\partial t} \left(\frac{1}{r \partial r \partial t} \right)$$
wave
i) Large r (wave) limit: when $R = \ln(r/\ell_{\eta}) >>1$
 $I(R,t)=I_0-F(t-R)$ I_0
ii) Small r (diffusive) limit:
 $I(r,t) = I_0 - I_0 \exp\left(-\frac{r^2}{4\eta t}\right)$ I_0
 I_0

Sheath of Current propagates out

Resolving the Paradox - 3rd regime At large t $(i.e., t > 1/\omega_A)$

$$\frac{\partial^2 I}{\partial t^2} = \omega_A^2 r \frac{\partial}{\partial r} \left(r \frac{\partial I}{\partial r} \right) + \eta r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial^2 I}{\partial r \partial t} \right)$$

Advection = diffusion

$$I(r,t) = \frac{I_0}{2\omega_A t} \left[1 - \exp\left(-\frac{\omega_A^2 r^2 t}{\eta}\right) \right]$$

$$j = \frac{1}{r} \frac{\partial I}{\partial r} = \frac{I_0 \omega_A}{\eta} \exp(-\frac{\omega_A^2 r^2 t}{\eta})$$

 $=\frac{I_0\omega_A}{\eta} \quad at \quad r=0$

Peak in j remains at Xandproduces a steady E(indep of η)i.e. fast reconnection

5. Summary 3D Reconnection v. diff. from 2D

Coronal heating model in complementary ways:
 -- as self-organised critical state
 -- by coronal tectonics model

-- updated version of Parker braiding

- Response to enhanced η in current sheet (CS):
 magnetic energy --> K.E. in wave -- later dissipate.
- But Dennis prophet far ahead of time
 need revolution, based on his ideas, to fully understand corona w. coupling micro <--> macro

