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Dennis Papadopoulos: his part in my downfall

• “Papadopoulos, Goldstein and Smith (Astrophys. J. 190, 175 (1974)) have examined 
wave-trapping in cavitons as a mechanism for rapidly shifting electrostatic waves out of 
resonance with an electron beam in the context of Type III solar radio bursts”
– R O Dendy, D Phil Thesis, p.5, Oxford University (1983)



Strongly nonlinear signals from solar and astrophysical plasmas: key examples

Full disk solar EUV/XUV 
Emission

X-ray binary Cygnus X-1

Microquasar GRS 1915



Strongly nonlinear signals from fusion plasmas: key examples

Edge turbulence in the
Mega Amp Spherical 
Tokamak (MAST)

Edge localised modes in 
the Joint European Torus
(JET)
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Probability density function of X-ray time series: Cygnus X-1

• Not classical:

– Gaussian (black dash)

– Log-normal (green dots)

• Extreme event distributions:

– Small amplitude Gumbel
(blue dash a = 1,
blue solid a = 2)

– Large amplitude Fréchet
(red solid a = 1.1)

Greenhough et al., Astron. Astrophys. 385, 693 (2002)



Probability density function: GRS 1915+105

• Not classical:
– Gaussian (black dash)
– log-normal (green dots)

• Extreme event distributions:
– Small amplitude Fréchet

(red solid a = 1.1)
– Large amplitude Gumbel

(blue dash a = 1,
blue solid a = 2)

• Several peaks
⇒ multi-component source



Extreme value PDFs of ISAT for three MAST Ohmic L-mode plasmas
Measured frequency of occurrence of ion saturation current amplitude, sampled at 500kHz 
and summed over timescale τ = 2μs (left) and 64μs (right). Red curves: extreme value 
distributions fitted.
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Dashed lines: log-normal (left) and normal (right) with same μ and σ as data.
Hnat, Dudson, Dendy et al., Nuclear Fusion 48, 085009 (2008)



Triangulating fusion plasma turbulence
There is a quest to understand the extent (if any) of “universality” – i.e. shared, scalable 
phenomenology – in plasma turbulence in the three main toroidal magnetic confinement 
approaches:

Large aspect ratio tokamak:

Stellarator Spherical tokamak



Comparing plasma turbulence in stellarator and spherical tokamak
The Mega Amp Spherical Tokamak,                                 The Large Helical Device, LHD
MAST, Euratom/UKAEA Culham                                      at NIFS, Tajimi, Japan  

Mega-Amp Spherical Tokamak (MAST) Large Heical Device (LHD)
Device type Spherical tokamak Heliotron-type stellarator

0.85m 3.9m
0.65m 0.65m

Typical magnetic field strength 0.5T 2.5T
Probe type Reciprocating probe 3 pins separated by 6mm in a probe array

Probe location Outboard midplane Divertor plate
Sampling frequency 500kHz 250kHz

Typical length of time series 50ms / 25,000 samples 1s / 250,000 samples
Shot numbers 14218, 14219, 14220, 14222, 14260, 14264 44190, 44191

Major radius, R
Minor radius, a



Edge turbulence measurements from MAST and LHD

MAST

LHD
16

17

18



Treatment of plasma turbulent fluctuation measurements
The inserted probes measure ion saturation current Isat ~ neTe

1/2. We know that we are 
addressing non-Maxwellian fluctuations with measured statistics:

MAST                              LHD (16)     LHD (17)              LHD (18) 

Treat each Isat measurement as a stochastic increment, i.e. a step on a random walk, on the 
shortest possible timescale τmin which is defined by the probe sampling rate. Fluctuations on 
longer timescales τ are constructed by summing and detrending:

The associated structure functions are constructed from the absolute moments



The generalised structure function S(p, l) of order p on scale l, for a signal z(x), is:
S(p, l) = < {z(x + l) – z(x)}p >

Here < > denotes an ensemble average – for example, an integral over x. 

Simple self similarity is reflected empirically by scaling of the form
S(p, l) ~ lζ(p)

Basic fluid turbulence models yield scaling that is linear in p, i.e. ζ(p) = ap, so that
S(p, l) ~ lap

where the value of a may be inferred from theory, e.g. 
a = 1/3 in Kolmogorov’s fluid turbulence approach of 1941
a = 1/4 in the Iroshnikov-Kraichnan theory of Alfvénic MHD turbulence

In general, ζ(p), which arises from the cascade processes that constitute the turbulence: 
-can be a nonlinear function of p, to capture intermittency, and
-may include terms reflecting dissipation.

Capturing statistical self similarity through structure functions



Generalised structure functions for MAST and LHD turbulence
If we plot the logarithm of S(p, l) = < {z(x + l) – z(x)}p > against l for different p, basic 
turbulent scaling dependence of the form S(p, l) ~ lap shows as linear traces.
Both MAST and LHD yield good scaling of this form, with two well defined scaling regions:

MASTa LHDb

aHnat et al, Nucl Fusion 48, 85009 (2008)
bDewhurst et al, Plasma Phys Contr Fus 50, 95013 (2008)
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Scaling properties of turbulence in MAST and LHD
We have thus identified a regime corresponding to fluid turbulence having S(p, l) ~ lap, 
or equivalently for Isat probe measurements

with ζ(m) = αm where α can be measured from the plots:
MAST                         LHD

This provides rigorous quantification of plasma turbulence properties for comparison 
-between different confinement systems
-between measurement and numerical simulations
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Related question: what is “a turbulence theory”?

Even for linear fluid scaling, different cascade processes may operate over different ranges 
of separations l, hence

S(p, l) = < {z(x + l) – z(x)}p > ~ lap for l < L1, 
S(p, l) ~ lbp for l > L1

Finite system size Lmax affects large-l properties of S(p, l) 
Dissipation on small scales affects small-l properties of S(p, l) 

Real turbulent signals also typically reflect intermittency: meaning large events which, 
although infrequent, are so large that they cannot be “neglected” or “ordered out” – often a 
consequence of the rise and fall of the most strongly dissipating structures. Self similarity is 
then reflected empirically by scaling of the form

S(p, l) ~ lζ(p)

where ζ(p) depends nonlinearly on p.

A model that predicts the functional form of ζ(p) from first principles, e.g. by linking it to 
the dimension of dissipating structures, is a turbulence theory.

Structure function scaling beyond the ideal



In 2000, Biskamp and Müller published a 512 cube simulation of MHD turbulence:

k5/3 E(k) versus k ζ(p) versus p S(5) versus S(3)

Early example of application of extended self similarity



Given a plot of log S(p, l) versus log l which is curved because of the consequences of 
dissipation, finite system size, intermittency, etc.,

Can the invariant statistical properties of a single underlying turbulent process, 
if one operates, nevertheless shine through?

Benzi et al. (Phys. Rev. E 48, R29 1993) hypothesise that: 
1. There is an unknown “generalised lengthscale” G(l) instead of l, such that

S(p, l) ~ [G(l)]ζ(p) instead of S(p, l) ~ lζ(p)

2. This generalised scaling penetrates into the dissipation range. 

Hence formally S(q, l) ~ [G(l)]ζ(q), and taking ratios of structure functions at two different 
orders, p and q

S(p, l) ~ [S(q, l)] ζ(p)/ ζ(q)

If, empirically, a plot of log S(p + 2, l) versus log S(p, l) yields a straight line, its gradient 
is ζ(p + 2)/ζ(p), and this reflects extended self similarity (“ESS”).
If the plot remains curved, this reflects deep nonlinear dependence of ζ(p) on p, due e.g. to 
intermittency

Addressing dissipative effects: extended self similarity



Solar wind plasma: a classic turbulence laboratory

-High magnetic Reynolds number, i.e. ratio of convective to dissipative terms
-Wide range of length scales, hence a well defined inertial range turbulent cascade

The Ulysses spacecraft has
a unique out-of-ecliptic  
heliocentric orbit, achieved by
gravity assistance from a Jupiter
swing-by

Ulysses has spent many months above the sun’s polar coronal holes, taking measurements of 
magnetic field components in the quiet fast solar wind



Solar wind magnetic field power spectrum measured by Ulysses

Logarithmic plots of spectral power [nT2/Hz] versus frequency [Hz] for the components of B

The low frequency 1/f range is probably due to the coronal driver of the solar wind
The high frequency 1/f5/3 inertial range is fairly well defined



Scaling properties of the solar wind
Logarithmic plots of S(p = 3, τ) versus τ (Nicol et al., Astrophys J 679, 862 (2008))

Significant curvature, hence not S(p, τ) ~ τap. Evidence for a spectral break near log10τ = 3
Systematic trends with increasing time, corresponding to greater heliocentric radial distance



Extended self similarity in the solar wind
Logarithmic plots* of S(p = 2, τ) versus S(p = 3, τ)

Evidence for S(p = 3, τ) ~ [S(p = 2, τ)] ζ(p = 3)/ ζ(p = 2), where ζ(2)/ζ(3) = 0.75
*Nicol et al, Astrophys J 679, 862 (2008)



Tomaso Aste’s (non-plasma-based) criteria* for complex systems
Complex systems
• exhibit emergence: some properties present at system level are not present at lower

level — e.g. a cell is alive but is made of inanimate elements
• are open: energy and information are constantly being imported and exported across 

system boundaries 
• have a history: the history cannot be ignored, even a small change in circumstances 

can lead to large deviations in the future 
• can adapt: in response to external or internal changes, the system can reorganize 

itself without breaking — self organising
• are not completely predictable: when a system is adaptive, unexpected behaviours 

can emerge — prediction becomes expectation 
• are multi-scale and hierarchical: system size and structure scale are over several 

orders of magnitude and distinct properties and functions are associated with different 
scales; dynamics can propagate through scales — avalanches, cascade effects 

• are disordered: there is no compact and concise way to encode the whole 
information contained in the system 

• have multiple (meta) (stable) states: small perturbations lead to recovery, larger 
ones can lead to radical changes of properties; dynamics do not average simply 

*http://wwwrsphysse.anu.edu.au/~ccs106/SUMMERSCHOOLS/SS22/Proceedings/Themes.shtml



Ornithophysical information flow
In the most successful model, each bird keeps an eye on about seven others

Quelea Starling



And so to information…

• The typical very low density and high temperature of plasmas in magnetically 
confined fusion experiments implies a high degree of disorder at the lowest 
level of description, namely the self-consistent dynamics of charged particles 
and electromagnetic field. 

• For this reason, there is no compact and concise way to encode the whole 
information contained in the system:

– particle-in-cell codes which implement this lowest-level description are 
best adapted to phenomena occurring on the fastest timescales and 
shortest lengthscales 

– higher level descriptions are reduced models; to construct these, 
information has deliberately been dropped.

• So, for plasmas and for complex systems in general, what is the information 
contained in the system? 



Quantifying physical linkage of two spatiotemporally separated, highly 
nonlinear, plasma signals: upstream solar wind and ionospheric

Solar wind from WIND 
satellite at sunward 
libration point

Terrestrial magnetometer
data at high geomagnetic
latitude

Solar wind drives magnetotail reconnection: energy release drives ionospheric 
currents affecting terrestrial magnetic field
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What is information?

Information resides in the number of yes/no (≡ binary 0/1) questions (≡ bits) 
to which we have the answer. E.g. for n = 3 questions there are:

23 = 8 possible combinations of yes/no answers, expressible as
8 three-digit (≡ three-bit) binary symbols 101, 110,…, etc.,

So in general n bits → an alphabet containing M = 2n symbols

Suppose we sample (ask n questions) the system on N occasions. The 
amount of information thereby obtained, H, is the number of questions to 
which we have answers:

H = N x n = N log2M

If all symbols occur with equal statistical probability P = 1/M, then
H = - N log2P

Any digitally sampled measured signal is a time-ordered string of N n-bit 
symbols X1, X2, ..,Xi,…,XN drawn from an alphabet having M = 2n symbols. 

Different symbols Xi recur Ni times, implying different empirical probabilities 
Pi = Ni/N ≠ 1/M



Information and signal measurement

Intuitively, the occurrence in the signal of a statistically rare symbol (small Pi, e.g. letter “x”) 
provides more information H than the occurrence of a frequent one (large Pi, e.g. letter “e”)

For the equal probability case, we also know H = - N log2P for N symbols, 
implying information per symbol = H/N = - log2P

It appears logical to define the information gained from a single occurrence of Xi as - log2Pi

In the signal of length N symbols, Xi occurs Ni times. So the total information provided by
the occurrences of Xi is Hi = - Ni log2Pi

The total information in the signal is then
H = ∑i Hi = - ∑i Ni log2Pi = - ∑i NPi log2Pi = - N ∑i Pi log2Pi

Hence the average information per symbol in a real signal is
h = H/N = - ∑i Pi log2Pi

This is the Shannon Entropy of the signal: “entropy” because of deep analogies 
with statistical mechanical entropy and, beyond, to thermodynamic entropy



Applying information theory to plasma data
Plasma systems typically yield highly nonlinear measurements – intermittent, bursty

Hence it may be suboptimal to try to identify correlation and causality via Fourier-derived 
techniques that rest upon the superposition of linear modes

Information-based analysis is intrinsically nonlinear, being based on sets of probabilities of 
arbitrary relative magnitude

The strategy is:
- Split each measured signal into a time-ordered string of symbols Xi 

- Bin the data symbols to establish their probabilities Pi 

- Calculate how information (meaning - ∑i Pi log2Pi type quantities) is shared, flows, 
and decays, both

- within a given signal
- between two contemporaneous but separate signals

These techniques are widely in physics and engineering but remain “novel” in plasma physics



Defining linear cross covariance and mutual information
Both provide measures of correlation between two signals A and B. 
Linear cross covariance

where E [...] denotes the mathematical expectation value, and Ā = E[A]. 

Nonlinear mutual information

where signals A and B have been partitioned into exhaustive discrete alphabets {ai}, 
{bj}, with 

- each symbol having empirical probability P(ai), P(bi), 
- P(ai,bj) is the joint probability of ai and bj



Quantifying clumpiness and flocking in complex systems, 
including plasmas
The Vicsek model* for flocking birds, fish,...

-Each flying bird (swimming fish...) takes account of the velocity orientation of its 
near neighbours, and does its best (subject to noise) to align with them
-Speed is constant, velocity orientation and position change

For each bird, at each successive time step:
-update position using current velocity 
-identify the other birds within radius R, take their 
average velocity orientation, and add noise

Noise range is -η < δθ < η

*Vicsek, Czirok, Ben-Jacob, Cohen & Shochet, Phys. Rev. Lett. 75, 1226 (1995)



Critical phase transition at noise η = ηc in the Vicsek model

At low noise level η,
a small number of flocks                  Structure on all
form and move together                   scales when η ≈ ηc

in roughly straight line

At high noise level η,
disordered Brownian motion



Classical and information theory results for Vicsek
Plot measured mutual information (blue) and susceptibility (red) versus noise η

Error bars near the peak identifying the phase transition are
- at their smallest for mutual information 
-at their largest for susceptibility
In this respect the intrinsically nonlinear measure is “better”
*Wicks, Chapman & Dendy, Phys. Rev. E 75, 051125 (2007)



Quantifying physical linkage of two spatiotemporally separated, highly 
nonlinear, plasma signals: upstream solar wind and ionospheric

Solar wind from WIND 
satellite at sunward 
libration point

Terrestrial magnetometer
data at high geomagnetic
latitude

Solar wind drives magnetotail reconnection: energy release drives ionospheric 
currents affecting terrestrial magnetic field
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How much information do the solar wind and magnetometer 
data share in common?
March, Chapman and Dendy, Geophysical Research Letters 42, L04101 (2005)

• Distinguish between hypotheses concerning solar wind propagation
– Project ST data series in time

according to different hypotheses
for vsw and n:
Δt = (Pw - PE) . n/v.n

• Time lag introduced by magnetospheric
plasma processes

– Additional Δt′ to accommodate this

• Compute mutual information between SW(t) and AE (t + Δt + Δt′), and maximise



Mutual information between AE and SW
For four different SW 
propagation hypotheses, as a 
function of additional time lag 
Δt′

Physics output:
• Best hypothesis for 
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Simultaneous two-spacecraft measurements in the solar wind
During 2005-2006 the WIND and ACE spacecraft were at the Sun-Earth libration point 
L1 in the distant upstream solar wind – a near-ideal (remote boundaries, broad range of 
scales) turbulent plasma 

This enables measurements of spatial correlations in the measured, highly nonlinear, 
plasma and magnetic field properties of the solar wind, over a range 30 to 100 Earth 
radii (Re) 



Simultaneous solar wind measurements from WIND and ACE

Typical observations of Bx [nT] from WIND (blue) and ACE (red)

Four day trace                            Embedded one-day trace

Strongly nonlinear signals exhibiting correlation across a range of timescales



Mutual information measures the spatial decay of correlation
Density                            Magnetic field strength

Mutual Information
as described

Cross correlation

Wicks et al, Astrophys J
690 734 (2009)

These measurements enable us to distinguish between the different possible 
MHD characteristics (shear vs. compressional Alfvénic) of the turbulent structures
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Aste’s complex systems criteria as applied to plasmas (1)
• Plasmas in fusion and space exhibit emergence, meaning that some properties present 

at system level are not present at lower level.

• Overall energy confinement and release is a property that emerges only at system level
from the interplay of coupled physical processes operating across a hierarchy of lower 
levels, reaching down to single particle dynamics. 

• Each level of description (single fluid; two fluids – electrons and ions; kinetic ions and 
fluid electrons; gyrokinetic; and so on) within this hierarchy is determined by the 
characteristic lengthscale and timescale of whichever physical process dominates at 
that level. Plasmas are thus multiscale. 

• The different levels of description and associated observed phenomenology extend 
over several orders of magnitude, and distinct properties and functions are associated 
with different scales. 

• Plasmas self organise persistent coherent macroscopic structures that only arise on 
lengthscales at, or just below, system level. Examples include magnetic islands, zonal 
flows and magnetospheric boundary layers, which are not present at lower level. 



Aste’s complex systems criteria as applied to plasmas (2)
• Plasmas are invariably open, in the sense that energy and information are 

constantly being imported and exported across system boundaries. 
• The quest for fusion power from magnetically confined plasmas involves 

injecting energy at the 10 MW level into a gram of material occupying a 
volume of tens of cubic metres. That such plasmas sustain, over seconds, the 
steepest steady-state temperature gradients known, while subject to energy 
fluxes of several MWm-2, shows their ability to adapt: in response to external 
or internal changes, the system can reorganize itself without breaking.

• Plasmas are not completely predictable: unexpected behaviours can emerge 
– prediction becomes expectation. Performance in future experiments is 
extrapolated using empirical dimensionless scaling laws in the absence of 
first principles predictions of global phenomenology. Key behaviours, such as 
enhanced confinement operating regimes and ELMs, were not predicted. 

• Transitions between confinement regimes typically have a history: even a 
small change in circumstances can lead to large deviations in the future, and 
reflect the existence of multiple metastable states. These transitions can 
occur spontaneously as plasma conditions evolve in time, or can be induced 
by careful sequencing of external drivers, notably auxiliary heating and 
fuelling. History is crucial and there is an element of irreversibility.



Information theory for plasmas is topical and exciting

Information theory may provide unifying principles for complex systems science 
and plasma physics. 

Irrespective of their physical and mathematical embodiment, all complex systems 
have in common the creation, transmission, sharing and destruction of 
information. 

• It is the ebb and flow, birth and death of information – a physical quantity –
that underlies and enables the physical phenomenology. 

• Quantifying the state and distribution of information within a complex system 
is thus crucial both to understanding its working, and to rigorously 
characterising its behaviour. 

• We outline some pioneering studies of mutual information in the solar wind 
plasma upstream of Earth, using techniques tested on standard complex 
systems models for the collective dynamics (i.e., flocking) of birds. 



Quantifying the phase change in the Vicsek model
Classical physics measures are

- “Order parameter” φ, 
in this case mean velocity

- “Susceptibility” χ, in this 
case velocity dispersion

Information theory measure is derived from the probability distribution of the 
birds’ positions and velocities {xn, θn} ≡ A ≡ {a1, a2, a3,...}: the “signal” comprising 
the “alphabet” (i.e., pre-assigned set of strings) ai, each of which is found to occur 
with measured probability p(ai)

From these probabilities we can construct the Shannon entropy

Given two such signals, we can measure their information theoretic correlation in terms of 
their normalised mutual information
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Strategy for calculating mutual information for Vicsek system

1. Take a snapshot

2. Discretise data – positions x   
and velocity orientations θ
work best

3. Calculate entropies



Measuring mutual information in the Vicsek system
Move from actual distributions to P(x), P(θ), and P(x, θ)

Raw data

P
(X

,θ)



Spatial decay of correlation depends on solar activity in different ways

Correlation lengths λ(|B|)  
and λ(|ρ|) are twice as big 
at solar max than solar min, 
and vary together throughout 
the solar cycle

Correlation lengths 
λ(Bx, By, Bz) do not change
with solar cycle

These results may reflect different MHD characteristics (shear vs. compressional Alfvénic) of the 
nonlinear structures; or at larger scales, differences between structure synthesis in the solar corona
and evolution in the solar wind



Linear cross-correlation yields similar trends
Decay lengthscale of linear cross-correlation λ in units of Earth radii RE

To compute cross-correlation, we need averages defined on a time window with duration τ:
• Short τ ~ 200 minutes enables us to resolve MHD turbulent fluctuations in the inertial range
• Long τ ~ 960 minutes averages over these, so that we focus on the 1/f range of propagating 

large scale fluctuations that may retain information about their coronal origin

We find solar cycle dependence of correlation measures is independent of window size


