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Wave-particle interactions are considered crucial for
understanding the radiation belts. Often, quasilinear theory
is used.

But recent reports of RBWWs(TM) (Really Big Whistler Waves)
[Cattell et al.; Cully et al.] raise fresh doubts about this.

Recent advances in nonlinear simulations are very timely [Nunn,
Omura et al., Gibby, ...] but are very demanding.

Existing theoretical ideas – diffusion, phase bunching, and phase
trapping – can be described by transport coefficients, practical
in global modeling studies.



Disclaimer:
◦ physics content
◦ graphics quality
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Current picture: relativistic electrons are produced in the outer
radiation belts during magnetic storms ...
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by local interactions with cyclotron-resonant waves combined with
radial transport by time-varying fields and drift-resonant waves.
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Motion of a particle resonant with one fixed wave
(not self-consistent)

Start with the Hamiltonian of a particle in a B field:

H(x,P; t) = mc2

√
1 +

(
P − qA(x)/c

mc

)2

where P = p + qA/c is the canonical momentum
and A = Ao + Aw.

Recall:
dx
dt

=
∂H

∂P
,

dP
dt

= −∂H

∂x
is equivalent to F = dp/dt.



slab geometry: z ∼ distance along field line
Ao = −yBog(z)x̂ ⇒ Bo = −yBog

′ŷ + Bogẑ

∇ ·Bo = 0 exactly for any g(z)

For a dipole, near the equator, g(z) ≈ 1 + g2z
2.
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Change variables from (x, Px, y, Py , z, Pz)
to (X,PX , φ, I, z̃, P̃z), using the generating function.

I is essentially the first adiabatic invariant µ = p2
⊥/2mB,

φ is the gyroangle, and z̃ = z.

Rewrite H in the new variables and
• Taylor expand (to 1st order) in qAw/mc2

• use the expansion sin(a sin θ) =
∑∞

n=−∞ Jn(a) sin nθ
• normalize the variables

After “a little” algebra . . .



To lowest order,

H

mc2
= H0 + ε

∞∑
n=−∞

Hn sin ξn,

with

dξn

dt
= ω − k‖v‖ − sn

Ωc

γ
.

Near the �th resonance, all terms except n = �
can be dropped by gyroaveraging over φ.
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Then dH/dt = ∂H/∂t ⇒ ω dI/dt = s� dγ/dt.

If ω is constant, ωI = s�γ(I, Pz, z) eliminates Pz and leads to

K(I, ξ; z) = Ko(I, z) + εK1(I, z) sin ξ with “time” z.

The equations are now simple enough to think about.



For fixed z, the phase portrait is like that of a plane pendulum:

W ∼
√

K1

∂2Ko/∂I2
, ω0 ∼

√
K1

∂2Ko

∂I2



Because K depends on z, the picture shifts as z changes.
Differentiating the 0th order resonance condition

d

dz

{
∂Ho

dI
(Ires, z) = 0

}

gives
dIres

dz
= −∂2Ko/∂z∂I

∂2Ko/∂I2
.

The “time” for the island to move by its own width is

τ ≡ W

dIres/dz
,

and the inhomogeneity parameter is

R ≡ ω0τ =
∣∣∣∣ ∂2Ko/∂z∂I

K1 (∂2Ko/∂I2)

∣∣∣∣ ∼ ∂Bo/∂z

Bw



Strongly inhomogeneous case: R � 1, the z dependence dominates.

ξ ≈ ξres +
A

2
(z − zres)2, A ≡

(∂2Ko

∂z∂I

)
res

(modified at the equator).

Going across the resonance,

δI =
∫ ∞

−∞
−εK1 cos ξ dz = −εK1

√
2π
|A| cos

(
ξres +

π

4
sign(A)

)
.

ξres is random over (0, 2π), so δI is randomly ±.

Multiple passes through the resonance: diffusion!
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DII =
K2

1

4τb

2π
|A| ⇒

Dα0α0 =
(∂α0

∂I

)2

DII

Dα0p =
(∂α0

∂I

)(∂p

∂I

)
DII

Dpp =
(∂p

∂I

)2

DII

This is consistent with

Dαp

Dαα
=

sin α cos α

− sin2 α + s�Ωc/ωγ
,

Dpp

Dαα
=

(
sin α cos α

− sin2 α + s�Ωc/ωγ

)2



A ≈ ∂

∂s

(
ω − k‖v‖ − n

Ωe

γ

)
gives the interaction length of the resonance, ∼ √

2π/A.

For broadband waves, this is replaced by

∆k‖
∣∣∣v‖ − ∂ω

∂k‖

∣∣∣,
which reproduces the Kennel and Engelmann [1966] diffusion
coefficients.



Surprisingly, values of the bounce-averaged broadband
and single wave diffusion coefficients are often very close
[JGR, 2001; 2007].

And in the single-wave limits δω → 0 and δθ → 0,
they become identical! [in preparation]



In the weakly inhomogeneous case, R � 1, changes with z are
slow and J =

∫
Idξ is an adiabatic invariant which is only

violated near the separatrix.

The island width gives a jump in J at resonance, which yields

δI = − 8
π

√∣∣∣∣ K1

∂2Ko/∂I2

∣∣∣∣ × sign(dIres/dz)

δI is not random, because ξ is determined by phase bunching.
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Even more nonlinear: phase trapping. Particles can enter the
separatrix and get caught there for many phase periods. δI grows
at the rate dIres/dz.

The probability of trapping (separatrix crossing) is related to ∂R/∂z.

Can estimate energization if PT is assumed.
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Phase Trapping: Constant Frequency

There are 3 equations:

γ =

√
1 +

2ΩeqgI

mc2
+

( Pz

mc

)2

, (kinematics)

kzPz

mγ
− ω +

s�Ωeqg

γ
= 0, (resonance)

ω

mc2
I = s�γ, (dynamics)

in 4 variables: γ, I, Pz, and z. Solve for γ(z):

(k2
zc2

ω2
−1

)
γ2 − 2

s�Ωeqg

ω

(k2
zc2

ω2
−1

)
γ −

[k2
zc

2

ω2
+

(s�Ωeqg

ω

)2]
= 0.

Sustained resonance (stable PT) is assumed.



Phase Trapping: Variable Frequency

Now there are 5 equations in 7 variables: γ, I, Pz,
dγ

dt
,

dI

dt
,

dPz

dt
,

and z, leading to a 1D ODE for γ(z):

(k2
zc2

ω2
−1

)dγ

dz
+

g′

g

(s�Ωeqg

ω
−kzc

ω

ΩeqgI/mc2

Pz/mc

)
+

k′
zc

ω

Pz

mc
−ω′

ω
γ = 0,

where

Pz

mc
=

γ − s�Ωeqg/ω

kzc/ω
, 2

Ωeqg

mc2
I = γ2 − 1 −

( Pz

mc

)2

.

Again, stable PT is assumed.

This is basically the procedure of Trakhtengerts et al. [2003]
and Demekhov et al. [2006].



RTA can occur (v‖ goes through 0 while maintaining PT).

This is included in the analytical treatment.

URA (resonances with ω > Ωe/γ) is also included.



So: the nonlinear effects have been summarized as advection terms.

∂f

∂t
= −Aα0

∂f

∂α0
− Ap

∂f

∂p

+
1

Gp

∂

∂α0
G

(
Dα0α0

1
p

∂f

∂α0
+ Dα0p

∂f

∂p

)

+
1
G

∂

∂p
G

(
Dα0p

1
p

∂f

∂α0
+ Dpp

∂f

∂p

)
,

or, if you prefer,

∂f

∂t
+

[
Aα0

Ap

][
∂f/∂α0

∂f/∂p

]
=

1
G

[
∂

∂α0

∂

∂p

]
G

[
Dα0α0 Dα0p

Dα0p Dpp

][
∂f/∂α0

∂f/∂p

]
,

where G = p2T (α0) sin α0 cos α0. (And don’t forget DLL.)

This advection-diffusion/Fokker-Planck equation isn’t so bad.



Possible evolution of f (schematic):



Final Thoughts:

small amplitude: linear response
“medium” amplitude: QL diffusion
large amplitude: NL behavior
very large amplitude: island overlap, QL diffusion!?

Broadband waves, homogeneous background ⇒ diffusion
Monochromatic waves, inhomogeneous background ⇒ D, PB, PT
Broadband waves, inhomogeneous background ⇒ ???




