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Wave-particle interactions are considered crucial for
understanding the radiation belts. Often, quasilinear theory
is used.

But recent reports of RBWWs(ZM) (Really Big Whistler Waves)
[Cattell et al.; Cully et al.] raise fresh doubts about this.

Recent advances in nonlinear simulations are very timely [Nunn,
Omura et al., Gibby, ...] but are very demanding.

Existing theoretical ideas — diffusion, phase bunching, and phase
trapping — can be described by transport coeflicients, practical
in global modeling studies.
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Current picture: relativistic electrons are produced in the outer
radiation belts during magnetic storms ...
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by local interactions with cyclotron-resonant waves combined with
radial transport by time-varying fields and drift-resonant waves.



Motion of a particle resonant with one fixed wave
(not self-consistent)

Start with the Hamiltonian of a particle in a B field:

H(x,P;t) = mcz\/l n (P - QA(X)/C>2

mc

where P = p + qA /c is the canonical momentum

and A=A, + A,.

Recall:

dx _9H 4P __0H
dt 0P’  dt Ox

is equivalent to F = dp/dt.
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slab geometry: z ~ distance along field line
Ao = —yBog(2)t = Bo= —yBog'y+ Bog?

V - B, = 0 exactly for any g(z)

For a dipole, near the equator, g(z) ~ 1 + ggzz.
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Change variables from (z, Py, vy, P, 2, P,)
to (X, Px, ¢, 1,2z, P,), using the generating function.

I is essentially the first adiabatic invariant p = p% /2mB,
@ is the gyroangle, and z = z.

Rewrite H in the new variables and

e Taylor expand (to 1! order) in qA,, /mc?

e use the expansion sin(asinf) =>""___ J,(a)sinnb
e normalize the variables

After “a little” algebra ...



To lowest order,

H @)
—— = Ho + ¢ Z H, sin¢&,,

mec2 =
with
dé,, (2.
— = W — /C”U” — SN —.
dt Y

Near the (" resonance, all terms except n = ¢
can be dropped by gyroaveraging over ¢.



11 | | I ]

10.5 | UU

8.5

9 | | | 1

0 600 120021800 2400 3000




Then dH/dt = O0H/0t = w dl/dt = st dv/dt.

If w is constant, wl = sl~(I, P,, z) eliminates P, and leads to

K(I,£2)=K,(I,z)+eKy(1,z)sin§ with “time” z.

The equations are now simple enough to think about.



For fixed z, the phase portrait is like that of a plane pendulum:
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Because K depends on z, the picture shifts as z changes.
Differentiating the 0" order resonance condition

d (0H, B
e s ) =0

dz
glves

dl,es  0°K,/0201

dz 0°K,/0I%
The “time” for the island to move by its own width is
_ %4
 dles/dz]
and the inhomogeneity parameter is
R = wor — 0°K, /0201 N 0B,/0z

K1 (62K, /012 B,



Strongly inhomogeneous case: 'R > 1, the z dependence dominates.

g(z — zms)z, A= (

(modified at the equator).

0°K,
g ~ 67“63 _I_ )7“68

0201

Going across the resonance,

> 2
0l = / —eK1cos§ dz = —€eKay | ﬁ COS (fres + %sign(A)).

— OO

res 18 random over (0,2m), so 61 is randomly +.

Multiple passes through the resonance: diffusion!
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A~ (‘fs (w — kv — n%)

gives the interaction length of the resonance, ~ /27 /A.

For broadband waves, this is replaced by

Ow

A’*€|||U|| oy |

which reproduces the Kennel and Engelmann [1966] diffusion
coefficients.



Surprisingly, values of the bounce-averaged broadband
and single wave diffusion coeflicients are often very close

[JGR, 2001; 2007].

And in the single-wave limits 0w — 0 and 060 — 0,
they become identical! [in preparation]



In the weakly inhomogeneous case, R < 1, changes with z are
slow and J = [ Id{ is an adiabatic invariant which is only
violated near the separatrix.

The island width gives a jump in J at resonance, which yields

8 K;
ol = ﬂ\/‘@ZKO/GIZ

01 is not random, because ¢ is determined by phase bunching.

x sign(dl,.s/dz)
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Even more nonlinear: phase trapping. Particles can enter the
separatrix and get caught there for many phase periods. 01 grows

at the rate dlyeg/dz.
The probability of trapping (separatrix crossing) is related to OR /0z.

Can estimate energization if PT is assumed.
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Phase Trapping: Constant Frequency

There are 3 equations:

2Qcqgl P,\?2 . .
v = \/ 1+ qéq — ( ) : (kinematics)
mc mc
k.P, 498
—wt el 0, (resonance)
mry Bl
W .
—— I = sl, (dynamics)
mc

in 4 variables: v, I, P,, and z. Solve for v(2):

2 2 2 2 2 5
(5o (5 - (5 ()] -o

BL W B BL W

Sustained resonance (stable PT) is assumed.



Phase Trapping: Variable Frequency

dy dlI dP,
dt’ dt’ dt’

Now there are 5 equations in 7 variables: v, I, P,,
and z, leading to a 1D ODE for ~(z2):

(kgcz _1) d7+g’ (SéQqu_ k.c Qquf/mcz)Jrk;c P, _w’

=0
w? dz g w w  P,/mc w me w !
where
P, :v—sfﬁqu/w’ 2Q€qgl—72—1— (PZ)Z.
me k.c/w mc? me

Again, stable PT is assumed.

This is basically the procedure of Trakhtengerts et al. [2003]
and Demekhov et al. [2006].



RTA can occur (v goes through 0 while maintaining PT).
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This is included in the analytical treatment.

URA (resonances with w > ). /v) is also included.



So: the nonlinear effects have been summarized as advection terms.
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or, if you prefer,
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where G = p?T' () sin ag cos ag. (And don’t forget Dyr.)

This advection-diffusion /Fokker-Planck equation isn’t so bad.



Possible evolution of f (schematic):
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Final Thoughts:

small amplitude: linear response

“medium” amplitude: QL diffusion

large amplitude: NL behavior

very large amplitude: island overlap, QL diffusion!?

Broadband waves, homogeneous background = diffusion
Monochromatic waves, inhomogeneous background = D, PB, PT
Broadband waves, inhomogeneous background =- 777





