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Abstract. It is shown that in hydrogen dom-
inated multi-ion plasmas supporting coherent
hydrogen cyclotron waves, the minority ilom species
with large M/Q are preferentially accelerated
and the maximum energy achieved scales as
(M/Mg*t)5/3, The importance of this scaling to
0Ot acceleration in the auroral zones and to oth-
er high energy heavy ion observations in the
earth's and Jupiter's magnetospheres is dis-
cuseed.



STANDARD (CHIRIKOV-TAYLOR) MAP

Interaction of a charged particle with
an infinite set of plane waves
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STANDARD MAPPING EQUATIONS

The change in particle velocity and wave phase
after every time step T = 2n/w is
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SURFACE-OF-SECTION PLOT
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SURFACE-OF-SECTION PLOT




EVOLUTION OF A DISTRIBUTION FUNCTION

Fick's second law, or Fokker-Planck equation

of (1) 0 | 9
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f(1) is the distribution function
D(I) is the diffusion coefficient

What is to be substituted for n and D(l) ?



DIFFUSION IN VELOCITY SPACE
Evaluation of the diffusion coefficient

» Single step jump in velocity (I, — I,)
= Markovian assumption;
= random walk (or Brownian motion).
» Multiple step jump in velocity (I, — 1)
"n»n,

" n_ is the number of steps for phase randomization.



DIFFUSION IN VELOCITY SPACE

Quasilinear diffusion coefficient (n=1)
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Define the correlation function:

C, = <y =11 (7 =15)>,

N

where <...>p IS an ensemble average for

a set of randomly distributed particles.

The correlation “time” n. IS such that

> ~
for n n., Cn 0.



DIFFUSION IN VELOCITY SPACE

Diffusion coefficient for n > n.:
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< ..>Is the ensemble average.
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DIFFUSION COEFFICIENT FOR THE STANDARD MAP
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> D is independent of 1
Rechester & White, Phys. Rev. Lett. 44, 1586 (1980)



MODIFICATION TO THE DISTRIBUTION FUNCTION

> In the standard map, the entire particle
distribution function is affected.

f(v)




PARTICLE INTERACTION WITH A
SPATIALLY LOCALIZED FIELD
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DIFFUSION COEFFICIENT FOR LOCALIZED CHAOS
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DIFFUSION COEFFICIENT FOR LOCALIZED CHAOS
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STICKINESS OF ORBITS
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PREVIOUS APPROACHES TO QUASILINEAR
DIFFUSION EQUATION

» Linearize the Vlasov equation and obtain an equation
for the perturbed distribution function.

» Assume that the underlying particle dynamics is chaotic
* Brownian motion (random walk);
* no structure to phase space.

» Long time evolution is the same as for short times

= allows the limit (t —o0) in evaluating D.

» Obtain time-independent, singular diffusion operator
O(w—nNw, —kV,)



A different approach is needed to describe the
evolution of a distribution function of particles
interacting with plasma waves.



LIE PERTURBATION SERIES METHOD

Hamiltonian approach to particle dynamics
and wave particle interactions:

HJ,0)=H,J)+¢eH,(J,0,1)

H. (J) describes the motion of the particle in the
’ absence of plasma waves.

H,(J,0,t) includes the interaction with waves.



LIE PERTURBATION SERIES METHOD

There exists an operator O, (Lie operator) such that
OL : (Ja 9)t — (Ja O)H—At
An advantage of the Lie operator is that

0, ' 1(J,0)= f (0, {J,0})



EVOLUTION EQUATION FOR THE
DISTRIBUTION FUNCTION

f(3,0), 0, — F(J,0) = (o;1 —1)-(J,0),

Dividing by At and taking the limit At — 0
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EVOLUTION EQUATION FOR THE
DISTRIBUTION FUNCTION

By averaging over the angles ©
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EVOLUTION OF THE DIFFUSION COEFFICIENT

t1_1>r§>1o DJ,t) — d(mo,—w,)



CONCLUSIONS

» Dynamical studies of wave-particle interactions
show a mixed phase space.

» The evolution of a distribution function requires
proper accounting of this phase space.

» The Markovian assumption for evaluating the
diffusion coefficient is invalid.

» Recent studies provide a detailed description
for the evolution of the distribution function
due to wave-particle interactions.



	KINETIC FORMULATION OF TRANSPORT OF CHARGED PARTICLES�INTERACTING WITH ELECTROMAGNETIC WAVES IN MAGNETIZED PLASMAS

