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Subcritical shock

Dissipation is sufficient to account for temperature jump required by RH relations

Supercritical shock

Additional process of reflection of part of incident ions is needed

(First critical Mach number: fast magnetosonic Mach number at which downstream
flow speed equals flow speed)



Specularly reflected ions in the foot of the quasi-perpendicular bow shock —
In situ observations (ISEE)

Sckopke et al. 1983
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lon velocity space distributions for an inbound bow shock crossing.

The position of the measurement is shown by dots on the density
profile. Phase space density is shown in the ecliptic plane with sunward
flow to the left.
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Schematic of ion reflection and downstream thermalization
at supercritical perpendicular shocks
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Classification of Computer Simulation Models of Plasmas

Kinetic Description
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Simulation Methods

1. Hybrid Method
lons are (macro) particles
Electrons are represented as a charge-neutralizing fluid

Electric field is determined from the momentum equation
of the electron fluid
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2. Particle-In-Cell (PIC) Method

Both species, ions and electrons, are represented as particles
Poisson‘s equation has to be solved

Spatial and temporal scales of the electrons
(gyration, Debye length) have to be resolved

Disadventage:

Needs huge computational resources

Adventage:

Gives information about processes on electron scales
Describes self-consistently electron heating and acceleration



Parameters in PIC Simulations of Collsionless Shocks

1. Mass ratio m./m

e

m
2. Ratio of electron plasma to gyrofrequency V=—-= ¢ :
ce VA mi
m./m, ®, / c/Vyu
Solar Wind 1836 100 - 200 (5000)
Biskamp and Welter, 1973 124 5 1-D
Lembege and Dawson, 1987 100 2 1-D
Liewer etal.,, 1991 1836 1-4 1-D
Savoini and Lembege, 1994 42 2 2-D
Shimada and Hoshino, 2000,2003,2005 20 20 1-D (90)
Lembege and Savoini, 2002 42 2 2-D
Krasnoselskikh et al., 2002 200 - 1-D
Hada, Oonishi. Lembege, Savoini 2003 84 2 1-D (18)
Scholer, Shinohara, Matsukiyo, 2003 1840 2 1-D (95)
Scholer, Matsukiyo, 2004 1840 2 1-D
Muschietti and Lembege, 2005 100 2 1-D (20)
Matsukiyo, Scholer, 2006 1860 2 2-D
Scholer, Comisel, Matsukiyo, 2007 1000 5 1-D (150)



2-D Hybrid Simulation of Perendicular Shock - B in Simulation (x-y) Plane

Winske and Quest 1988
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Oblique propagating Alfven lon Cyclotron waves produced

by the perpendicular/parallel temperature anisotropgy
(large perp temperature due to reflected gyrating ions)
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Shock Ripples

Lowe and Burgess 2003

Burgess 2006

Shocks without ripples

B perp to simulation plane
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lon scale structures produce efficient
electron scattering ——

Electron acceleration (test particle electrons
in hybrid code shock)



Cluster Observations of Bow Shock Ripples

Moullard et al. 2006
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Nonstationary Shocks (Self-Reformation)
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Oblique Shocks and Whistler Precursor

Whistler critical Mach number

_ |Cos®,, |
2(m, /m)**

w

Condition:
(1) Phase velocity = shock velocity (phase standing)
(2) Wave length = electron inertial length (smallest wave length)

Below M,, exists phase standing small amplitude upstream whistler
with upstream directed group velocity



Biskamp and Welter 1972

1. Whistler excited nonlinear instability beween incoming
solar wind and reflected ions

Incoming and reflected ion beams are stable when velocity difference large

A nonlinear beam-instability between incoming and reflected ions
IS triggered by the electric field of the upstream whistler and results
in dissipation
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Hada et al. 2003

2. Self-reformation by ion accumulation at
the upstream edge of the foot
shock
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Scholer et al. 2003

3. Instabilities in the foot

shock

Source of instabilities

U, # Ug
U; # U
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Situation in the foot region of a perpendicular shock
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Microinstabilities in the Foot Region of Quasi-Perpendicular Shocks

Wave type Necessary condition
Buneman inst. Upper hybrid Au >> v,
(Langmuir)
lon acoustic inst. lon acoustic T.>>T,
Bernstein inst. Cyclotron harmonics AU >V,
Modified two-stream inst.|  Oblique whistler Au/cost > v,
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{ unmagnetized ions > perpendicular trapping
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Mass dependence of the maximum linear growth rate of MTSI

(Cold plasma dispersion relation)
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Reformation of almost perpendicular medium Mach number shocks:
Mass ratio and ion beta effect
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Phase-mixing — lon thermalization
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Future of Shock Simulations

2-D PIC Simulations of Shocks - Instability-Induced Nonstationarity
2-D, 3-D (Hybrid) Global Bow Shock Simulations

Very High Mach Number Shock PIC Simulations — Electron acceleration



1. 2-D PIC Simulations of lon/lon Beams in a Periodic System
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AN

Two-Step Instabilities

1. MTSI between reflected /transmitted ions and electrons —> Parallel electron acceleration

2. Electron acoustic instability — electron heating

Electron phase space v, at a certain x Power spectrum of E, electric field component
R (broad-band fluctuations typical for EAI)
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10— | e~double peaked electron distributions

N are free energy~squrce for electron
0.5 - > 0.5 = acoustic instability. Small scale vortices —
parallel electron heating.
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2. 2-D Global Hybrid Simulation

Omidi, Blanco-Cano, Russell 2005
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3. Very High Mach Number Shocks - SNRS

ELECTRON HEATING IN SUPERHIGH MACH NUMBER
SHOCKS*

K. PAPADOPOULOS
Department of Physics and Astronomy, University of Maryland, College Park, MD, U.S5.4.

(Received 15 July, 1987)

1. Excitation of the Buneman Instability in the foot ——> Electron heating

2. Excitation of lon-Acoustic Instability —> Further strong electron heating

Cargill and Papadopoulos 1988: hybrid simulation of a Mach number M, = 50 shock
with phenomenological resistivity



Buneman Instability

Au >> Vthe

Suppressed when

Be> 4 (1-a)Mu?2/pu where p=ion/electron mass ratio
o ratio of reflected ions

with p = 1836, o = 0.2 this results in

B.> M2/ 720

(always fullfilled at Earth‘s bow shock)

But: when using in PIC simulationssmall mass ratio u the Buneman Instability
can get excited at smaller Mach number
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Matsukiyo 2009



PIC Simulations: Buneman-Instability (Bl) in the Foot and Electron Acceleration

Shimada and Hoshino 2000
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Numerical simulations have led to better understanding of features observed in situ
at Earth's bow shock (ISEE).

Simulations have predicted new features/processes at shocks which have
subsequently been verified by in situ observations at Earth's bow shock (Cluster).

Comparison of simulation and in situ observations allows verification of the validity
of the simulation model/method.

Simulations allow access to parameter regimes (in astrophysical settings)
not directly accessable by observations.
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