Magnetic Reconnection: An Ultimate Problem in Nonlinear Plasma Physics

H. Karimabadi¹, W. Daughton², V. Roytershteyn², L. Yin², J. Scudder³

¹SciberQuest, Inc. / UCSD ²Los Alamos National Lab. ³Univ. Of Iowa

Modern Challenges in Nonlinear Plasma Physics A Conference honoring the career of Dennis Papadopoulos June 15-19, 2009, Halkidiki, Greece

How I Chose my Thesis Advisor

- I worked with different advisors in radio astronomy, cosmology, QED, pulsars, but
- I chose **Dennis** because of the **4** P's:

- **Phenomenal physicist**: was always late but still gave people hard time at seminars/colloquia

- **Parade of generals**: constant parade of military higher ups through the department

- Posh: Mercedes convertible
- **People**: Cargill, Goodrich, Hizanidis, Menyuk, Rowland, Sprangle, Vlahos, Akimoto, Ghosh, Fung, Taaheri,

Reconnection in Space Plasmas

Current Sheet

Current layer + corresponding field reversal \vec{B} Current Layer \vec{B}_G **Neutral Sheet** $\longrightarrow \vec{B}_G = 0$ **Guide Field**

Simple Models

Baffling Trends

- Both Sweet-Parker and Petschek models have major flaws but have formed the basis of much research in reconnection physics
- Many researchers continue to use them in modeling solar corona, magnetosphere, ...
- There is a fixation on the reconnection rate which masks a lot of important physics.

During this Talk:

- Show results from recent state-of-the-art simulations to illustrate the complexity of the reconnection process
- Compare 2D vs. 3D results to see whether 2D studies have any relevance

Making Breakthrough Simulations - 100-1000x larger

- Use open boundary conditions: Daughton, Scudder, Karimabadi, 2006
- Roadrunner super computer at LANL is enabling Trillion-particle simulations
- Implement collisions in Full PIC using Fokker-Planck treatment of collision operator
- Our largest simulation to date on reconnection: Physical domain (200 d_i)³
 10243 collered on 22 trillion particles
 - 1024³ cells, 0.32 trillion particles

Physics Questions

- Can long stable current sheets exist in nature?
- Are there other means of annihilating the magnetic field besides reconnection?
- Can fast reconnection occur in large scale systems in <u>collisionless</u>, and <u>collisionless</u>
 <u>regimes</u>? Magnetosphere is ~1000 d_i, and solar flares are > 10⁶ d_i
- Can reconnection occur in high beta plasmas?
- Does reconnection turn off or is it quasi-steady?

Collisionless Limit

2D simulation: cyclical formation of plasmoids

 $t*\Omega_{ci}=0.00$

Surprising New Results Daughton et al, PoP, 2006 2.13 1.55 z/d_i I. Highly elongated electron layer 0.97 0.39 -0.19 0.77 2.40 2. Rate controlled by this layer 1.88 1.37 z/d_i 0.85 0.33 3. Unstable to plasmoid formation -0.18 0.70 1.81 1.42 1.03 4. Inherently time dependent z/d_i 0.64 0.25 -0.14 -0.53 1.63 1.28 0.93 z/d_i 0.58 Two orders of magnitude 0.23 $D_e \sim 25 d_i \longrightarrow$ larger than previous -0.12 0.47 estimates! 1.16 0.91 0.66 0.41 20 0.16 0.09 Similar conclusions in K. Fujimoto, PoP, 2006 0 34 $20 x/d_i = 30$ 10 40

Essential Physics of Electron Expansion

$$\begin{array}{ll} \text{Generalized} \\ \text{Ohm's law} \end{array} \quad \mathbf{E} + \frac{\mathbf{U}_e \times \mathbf{B}}{c} = \eta \mathbf{J} - \left[\frac{1}{en_e} \nabla \cdot \mathbf{P}_e + \frac{m_e}{e} \frac{\mathbf{d} \mathbf{U}_e}{dt} \right] \equiv \mathbf{S} \end{array}$$

Need contribution to get steady state

Near x-point: $U_{ex}B_z \propto x^2 \longrightarrow \frac{\partial B_z}{\partial t} < 0$

Layer will expand without non-ideal term to balance

Multi-Scale Structure of the Electron Layer

 $\Delta_e \longrightarrow$ Total length of non-ideal region

 D_e

- I. Region of uniform electron inflow
- 2. Maximum electron outflow
- 3. Size of out-plane current layer

Reconnection Rate Remains Fast

Remarkably insensitive to system size!

> See Daughton & Karimabadi, 2007

Testable New Predictions

- I. Much longer electron diffusion region $D_e \sim 3-5d_i$
- 2. Elongated non-gyotropic electron jets $\Delta_e > 10d_i$
- 3. Filled-in quadrupole structure out to Δ_{a}
- 4. Electrostatic potential structure
- 5. Continuous reconnection rate modulated in time
- 6. Plasmoid production range of sizes for both antiparallel and guide field geometry

Observational evidence from Cluster - Eastwood et al, JGR, 2007

Collisional Limit

Collisional Reconnection

- Two different behavior based on system size
 - Stable Sweet-Parker and low rate for small system
 - Unstable Sweet-Parker and high rate for large system

Unstable Sweet-Parker Layer

What About 3D?

Linear Vlasov Theory + **Simulation Parameters** $m_i = m_e$ $T_i = T_e$ $\rho_i = L$

3D VPIC Simulations	$> \begin{array}{c} 200d_i \times 20d_i \times 200d_i \\ 1000 \times 100 \times 1000 cells \\ 16 \times 10^9 \text{ particles} \end{array}$
strong guide field = - 1.0 B ₀	drift-kink $k_y^*L = 0.44 \gamma/\omega_{ci} = $ stable tearing $k_x^*L = 0.5 \gamma/\omega_{ci} = 0.130$
intermediate guide field = - 0.5 B_0	drift-kink k _y *L = 0.44 γ/ω_{ci} =0.203 tearing k _x *L = 0.5 γ/ω_{ci} =0.141
guide field = 0:	drift-kink $k_y^*L = 0.44 \gamma/\omega_{ci}=0.258$ tearing $k_x^*L = 0.5 \gamma/\omega_{ci}=0.143$

3D simulation of anti-parallel case

Islands

Kink Mode

3D simulation of anti-parallel case

Formation of Standing Structure

2D vs 3D Comparison

Kinking Produces Folded Flux Ropes

Plasmoid-rope

Compare Large vs Small Case

- Wavelength & layer thickness are near the same
- Kinking leads to folding and detached current tubes

Large Run

3D simulation of guide field case

3D simulation of guide field case

Summary

 Need to move away from simple models even in the collisional case

- Fully kinetic results at odds with reduced models
- 2D studies useful but 3D adds significant modification to the details
- Depending on the specific question, 2D results may be invalid (e.g., particle acceleration in the presence of a strong guide field)