Ion acceleration during magnetic reconnection

J. F. Drake

University of Maryland

- M. Swisdak University of Maryland
- M. Opher George Mason University
- T. Phan UC Berkeley
- E. Quatert UC Berkeley
- R. Lin UC Berkeley
- S. Lepri U Michigan
- T. Zurbuchen U Michigan
- P. Cassak University of Delaware
- M.A. Shay University of Delaware
GORDON RESEARCH CONFERENCES
Brewster Academy
June 20 - 24, 1977
"Magnetic Reconnection in Space and Laboratory Plasmas"
F.W. Perkins, Chairman, K. Papadopoulos, V. Chairman
Some energetic ion observations in the heliosphere

- **Flare observations**
 - In solar flares energetic electrons up to MeVs and ions up to GeVs have been measured
 - A significant fraction of the released magnetic energy appears in the form of energetic electrons and ions (Lin and Hudson ‘76, Emslie et al ‘05)
 - Correlation between > 300keV energetic electrons and > 30 MeV ions (Shih et al 2008) ⇒ common acceleration mechanism
 - In impulsive flares see enhancements of high M/Q ions (Mason ‘07)

- **Ion heating in solar wind reconnection exhausts** (Gosling et al 2005, Phan et al 2006)

- **Near universal super-Alfvenic ion tails in the slow solar wind** f ~ ν⁻⁵ (Fisk and Gloeckler 2006)

- **Anomalous Cosmic Rays** -- ions with energy 10-100MeV whose source is in the vicinity of the heliospheric termination shock/heliosheath
• Time-average γ-ray spectrum from Oct 28 2003 X-17 flare
RHESSI Gamma ray observations

- October 28 2003 flare - x-rays in blue and gamma rays in red.
A multi-island acceleration model

- A single x-line line model can not explain the high fraction of energy going into electrons and ions in flares
 - Parallel electric fields are strongly localized around the x-line -- energetically unimportant
- Narrow current layers spawn multiple magnetic islands in reconnection with a guide field
 - Must abandon the classical single x-line picture!!
Multi-island reconnection

- Consider a reconnection region with multiple islands in 3-D with a stochastic magnetic field (e.g., Onofri et al 2006)
- How are electrons and ions accelerated in a multi-island environment?
 - Fermi reflection in contracting magnetic islands (Kliem 94, Drake et al 2006)
 - Rate of energy gain independent of particle mass
 \[
 \frac{d\varepsilon}{dt} \sim 2\varepsilon \frac{c_A}{L_x}
 \]
 \Rightarrow \text{same for electrons and protons}
Electron Dynamics in simulation fields

- Electrons gain energy during each reflection from contracting island
 - Increase in the parallel velocity
Ion acceleration during reconnection

- Fermi acceleration through island contraction is efficient only for super-Alfvenic ions
 - Need seed heating mechanism for ions
- Ions gain significant energy through large-scale Alfvenic flows
 - Does not facilitate the production of particles in the 100MeV to GeV range in the corona ⇒ energy gain is reversible
- Parallel electric fields are inefficient accelerators of ions
- Ion “pickup” in magnetic reconnection exhausts is the dominant seed heating mechanism.
Seeding super-Alfvenic ions through pickup in reconnection exhausts

- Ions moving from upstream cross a narrow boundary layer into the Alfvenic reconnection exhaust

- The ion can then act like a classic “pick-up” particle, where it gains an effective thermal velocity equal to the Alfvenic outflow $T_i \sim m_i c_A^2$
 - Energy proportional to mass (Fujimoto and Nakamura, 1994)
Ion acceleration during anti-parallel reconnection

- PIC simulation with $m_i/m_e=25$
- Sharp increase of T_i in the exhaust
- In pickup picture
 $\Delta T_i \sim m_i \Delta v^2/3 \sim m_i c_A^2/3$
Ion temperature in reconnection outflows: anti-parallel versus guide field

- Comparison of PIC simulations with and without a guide field
- Temperature increments of protons
 - Little proton heating with strong guide field. Why?
Pickup threshold: guide field

- Protons and alpha particles remain adiabatic (μ is conserved)
- Only particles behave like pickup particles gain significant energy \Rightarrow threshold for pickup behavior

$$\frac{\nu_{iy}}{\Delta} \approx \frac{0.1 c_{Apx}}{\rho_{sp}} > \Omega_i \Rightarrow \frac{m_i}{Z_i m_p} > 10 \frac{c_{ps}}{c_{Apx}}$$

For a given ion mass and charge this is a threshold in the reconnecting magnetic field B_x
Wind observations of solar wind exhaust

- $300R_E$ event (Phan et al., 2006)
- Exhaust velocity $\sim 70\text{km/s}$
- $\Delta T_p \sim 7\text{eV}$
- $\Delta T_\alpha \sim 30\text{eV}$

\[
\frac{\Delta T_\alpha}{\Delta T_p} = \frac{m_\alpha}{m_p}
\]

- Same for higher mass ions
Wind solar wind exhaust data

• Wind data from 22 high-shear, solar-wind reconnection exhaust encounters
• Proton temperature increase in exhaust is given by

\[3\Delta T_p \simeq 0.39m_p\Delta v^2 \]

– Correct scaling but below expected values
Impulsive flare energetic ion abundance enhancement

- During impulsive flares see heavy ion abundances enhanced over coronal values
- Enhancement linked to Q/M

$$\propto \left(\frac{Q}{M} \right)^{-3.26}$$

Mason, 2007
Abundance enhancement of ions during impulsive flares

• In impulsive flares see an abundance enhancement of high M/Q ions compared with nominal coronal values.
• Ions are seeded to super-Alfvenic velocities through interaction with reconnection exhausts.
• Once the ions are super-Alfvenic the Fermi island contraction mechanism acts on all ions.
• Is the abundance enhancement linked to the pickup threshold?
Abundance enhancements in impulsive flares

• Ion pickup criterion can be rephrased as a threshold on magnetic island width w_c.
 \[
 \frac{m_i}{Z_i m_p} > 10 \frac{c_{sp}}{c_{Axp}} \quad c_{Axp} \approx c'_{Axp} w_c > 10 c_{sp} \left(\frac{Z_i m_p}{m_i} \right)
 \]
 – Higher M/Q ions have lower island width thresholds

• Rate of production of pickup ions
 \[
 \frac{dN_i}{dt} \sim \sum_{w > w_c} 0.1c_{Ax} L_w \sim \sum_{w > w_c} w^2 \sim \int_{w_c}^{\infty} dww^2 P(w)
 \]
 – Take powerlaw distribution of island widths: $P(w) \sim w^{-\alpha}$
 \[
 \frac{dN_i}{dt} \sim w_c^{3-\alpha} \sim \left(\frac{Z_i m_p}{m_i} \right)^{3-\alpha}
 \]
 – Match the Mason ‘07 observations if $\alpha \sim 6.26$
Anomalous Cosmic Rays (ACRs)

• 10-100 MeV/nucleon particles
• Local interstellar medium neutrals are ionized and picked-up deep in the heliosphere and carried back out to the heliospheric termination shock (TS) where they are accelerated
 – The Voyager 1 & 2 spacecraft observations revealed that the local TS was not the source of the ACRs.
 – Produced by the TS at the flanks of the heliosphere (McComas and Schwadron 2006)?
MHD model of the heliosphere

- Supersonic solar wind becomes subsonic at the termination shock
- The heliospheric toroidal field B_ϕ changes sign across the heliospheric current sheet
- The tilt of the solar magnetic field with respect to the rotation axis generates a sectored magnetic field
 - Latitudinal extent depends on solar cycle ~ 30 degrees
 - Sectors are compressed across the TS and as the flow slows as it approaches the heliopause
Collisionless reconnection of the sectored heliospheric field

- The sectored field is stable to reconnection upstream of the TS because the width of the current sheet is much wider than c/ω_{pi}.
 - Collisionless reconnection is very weak

- The current layers compress on their approach to the heliopause
 - Inevitably have the onset of collisionless reconnection
 - Dissipation of nearly all of the magnetic energy
Electron and ion energy spectra

- Both ions and electrons gain energy
- Include 5% population of pickup particles to simulate the production of ACRs
- A key feature is that the rate of energy gain of particles increases with energy

\[
\frac{d\varepsilon}{dt} \propto \varepsilon
\]

⇒ first order Fermi
Proton temperature

- Within islands
 \(T_{i||} > T_{i\perp} \)
- In exhaust regions
 \(T_{i||} < T_{i\perp} \)
- Violate marginal firehose condition within the islands
 - Self-consistency is crucial
- Energetic electron pressure in flares can approach the magnetic pressure (Krucker et al 2009)
1-D Model equations

- Rate of energy gain: first order Fermi
 \[\dot{v} = \frac{dv}{dt} = \frac{1}{\tau_h} \left(1 - \frac{4\pi \rho}{B^2} \right)^{1/2} v \]
- Model equation for the omnidirectional distribution function
 \[F(v,t) = 4\pi v^2 f(v,t) \]
 \[\frac{\partial F}{\partial t} + \frac{\partial}{\partial v} \dot{v} F = -\frac{1}{\tau_L} [F - F_0(v)] \]
- Above the source energy this is an equidimensional equation
 \[\Rightarrow \text{powerlaw solutions} \]
Distributions and spectral indices

• Exact steady state solutions for $F(v)$

$$F(v) = (\gamma - 1)v^{-\gamma} \int_0^v dss^{\gamma-1} F_0(s)$$

• Spectral index

$$(\gamma - 1) \left(1 - \frac{4\pi p_0}{B^2} \frac{\gamma - 1}{\gamma - 3}\right)^{1/2} = \frac{\tau_h}{\tau_L}$$

• Heliopause limit $\tau_h << \tau_L$

$$\gamma = 3 + \beta_0$$

\Rightarrow spectral index controlled by marginal firehose condition
Implications for ACRs

- Squeezing of plasma near the HP causes β to drop (similar to the magnetopause)
 \[\Rightarrow \beta_0 \approx 0.5 \]
- For ACRs
 \[F \sim \epsilon^{-1.75} \]
- The minor species have the same form when written on a per nucleon basis
- Background plasma also acts like a minor species
 \[f \sim v^{-5.5} \]

Is the heliosheath the source of the Fisk/Gloeckler v^{-5} distributions?
Universal super-Alfvenic ion spectrum in the quiet solar wind

- Proton spectra of the form $f \propto v^{-5}$ are observed throughout the heliosphere.
Conclusions

- High energy particle production during magnetic reconnection involves the interaction with many magnetic islands
 - Not a single x-line
- Ion interaction with the reconnection exhaust seeds them to super-Alfvenic velocities.
 - Ions that act as pickup particles as they enter reconnection exhausts gain most energy
 - M/Q threshold for pickup behavior
 - Gain a thermal velocity given by the Alfven speed
 - Wind and ACE observations support this picture
- Interaction with reconnection exhausts should enable energetic ions to be accelerated through Fermi contraction
- M/Q threshold for pickup behavior is a possible explantation of impulsive flare heavy ion abundance enhancements
Conclusions (cont.)

- The sectored heliospheric field is compressed as it approaches the heliopause
 - Collisionless reconnection inevitably onsets and dissipates the sectored field energy
 - Enormous reservoir of energy
 - Preferential heating of pickup particles
- Efficient heating of pickup ions through magnetic island contraction
 - Balance of contraction drive and convective loss yields powerlaw solutions
 - Spectral indices are controlled by the approach to firehose stability
- Minority ions have similar spectra to the main He and H
- Background protons are strongly heated and have spectra similar to those seen by Fisk/Gloeckler
Energetic electron and ion correlation

- > 300keV x-ray fluence (electrons) correlated with 2.23 MeV neutron capture line (> 30 MeV protons)
- Acceleration mechanisms of electrons and protons linked?

Shih et al 2008