Electrostatic Waves Excited During Active Experiments in the Ionosphere

Paul A. Bernhardt, Craig A. Selcher Plasma Physics Division, Naval Research Laboratory Washington, DC 20375

Serafin Rodriguez, Joe Thomason Radar Division, Naval Research Laboratory, Washington, DC 20375

Mike McCarrick, BAE Systems, Washington, DC

Brent Watkins, GI University of Alaska, Fairbanks, AK

Gordon Frazer, ISR Division, DSTO, Edinburgh, SA, Australia

Phil Erickson, MIT Haystack Observatory, MA

lern Challenges in Nonlinear Plasma Physics Halkidiki, Greece 16 June 2009

k Sponsored by the Office of Naval Research

Electrostatic Wave Generation

- Fast Hypersonic Chemical Releases
 - Radar Scatter from ES Waves
- High Power Radio Waves
 - Excited Processes
 - Radar Scatter
 - Field Aligned Irregularities
 - Enhanced Ion Lines
 - Enhanced Plasma Lines
 - Stimulate Electromagnetic Emissions
 - Mode Conversion
 - Parametric Decay Instabilities

Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX)

- **Objective:** Investigate Plasma Turbulence Driven by Rocket Exhaust in the Ionosphere Using Ground Based Radars
- **Description:** Fire OMS Engines to Excite Plasma Turbulence

Radar Diagnostics of Artificial Plasma Turbulence

SHUTTLE IONOSPHERIC MODIFICATION WITH PULSED LOCALIZED EXHAUST SIMPLEX

Wave Generation by Chemical Releases: SIMPLEX– Space Shuttle Exhaust

Space Shuttle OMS Engine Exhaust Parameters

Orb	oital Maneuvering System (OMS)	Exhaust Species	Mole Fraction
		CO	0.050
		CO ₂	0.122
a training and		H ₂	0.241
		H ₂ O	0.274
Flow Rate: 2.5 x 10 ²⁶	Molecules per Second per Engine	N ₂	0.313
Nonuniform Dual OMS Burn	Symmetrical Dual OMS Burn in Daylight	Single OMS	Burn at Nic

DSMC Calculations of OMS Exhaust

Shuttle Exhaust Release at 300 km altitude 50 10^{25} molecules/s for 10 seconds. Velocity = 10.75 km/s, H₂O Temperature = 120 K

Time = 30 Seconds

STS-110 Burn Location,18 April 2002 GMT Ignition: 17:26:18.95, Termination: 17:26:28.95

Radar Scatter from ES Waves

SIMPLEX IV Radar Backscatter

Millstone Hill Radar, 18 April 2002 Burn Time 17:26:19 – 17:26:29 UT 2 Second and 24 km Resolution

The High Frequency Active Auroral Research Program HAARP

Stimulated Electromagnetic Emissions, Radar Backscatter, Enhanced Plasma Waves and Artificial Aurora

Ionospheric Modification with High Power Radio Waves

Stimulated Electrostatic (ES) Emissions

- Basic Theory
 - Matching Conditions
 - Low and High Frequency Electrostatic Waves
 - Electromagnetic Waves
- Observations
 - Radar Scatter (Enhanced Ion and Plasma Lines)
 - Stimulated Electromagnetic Emissions (SEE)
- Applications of SEE and Radar Scatter
 - Validation of Non-Linear Plasma Interactions
 - Electron Temperature Measurements
 - Altitude Profile of Scattered Electromagnetic Waves

ES and EM Wave Generation Loss High EM Low **Optional Mode Power Parametric** Frequency Pump Conversion EM or ES Decay **ES** Wave Wave Wave Loss **Possible Mode** High Conversion Frequency EM or ES Wave Low Frequency **EM** Wave Loss Optional Mode Conversion Received **EM** Wave

Parametric Decay Instabilities

Parent Wave 0	Daughter Wave 1	Daughter Wave 2	Instability Name	Observed for HF
Electromagnetic	Electron Plasma	Ion Acoustic Wave	Parametric Decay	Yes
Wave	Wave		Instability	Radar/SEE
Electron Plasma	Electron Plasma	Ion Acoustic Wave	Electron Decay	Yes
Wave	Wave		Instability	Radar/SEE
Electromagnetic	Zero Frequency	Zero Frequency	Oscillating Two-	Yes
Wave	Electron Wave	Ion Wave	Stream Instability	Radar/SEE
Electromagnetic	Electromagnetic	Ion Acoustic Wave	Stimulated Brillouin	Yes
Wave	Wave		Scattering Instability	SEE
Electromagnetic	Electron Plasma	Electron Plasma	Two-Plasma Decay	No
Wave	Wave	Wave	Instability	
Electromagnetic	Electromagnetic	Electron Plasma	Stimulated Raman	No
Wave	Wave	Wave	Scattering Instability	
Upper Hybrid	Upper Hybrid	Lower Hybrid	Lower-Hybrid Decay	Yes
Wave	Wave	Wave	Instability	SEE
Electron	Electron	Ion Bernstein	Electron Bernstein	Yes
Bernstein Wave	Bernstein Wave	Wave	Decay Instability	SEE

Magnetized ES Waves

Parametric Decay Instabilities Observed by Radar Scatter

Parent Wave 0	Daughter Wave 1	Daughter Wave 2	Instability Name	Observed for HF
Electromagnetic	Electron Plasma	Ion Acoustic Wave	Parametric Decay	Yes
Wave	Wave		Instability	Radar/SEE
Electron Plasma	Electron Plasma	Ion Acoustic Wave	Electron Decay	Yes
Wave	Wave		Instability	Radar/SEE
Electromagnetic	Zero Frequency	Zero Frequency	Oscillating Two-	Yes
Wave	Electron Wave	Ion Wave	Stream Instability	Radar/SEE

Radar Scatter from ES Waves $\lambda_{ES} = \lambda_0/2$

Parametric Decay Instabilities Observed by Stimulated Electromagnetic Emissions

Parent Wave 0	Daughter Wave 1	Daughter Wave 2	Instability Name	Observed for HF
Electromagnetic	Electron Plasma	Ion Acoustic Wave	Parametric Decay	Yes
Wave	Wave		Instability	Radar/SEE
Electron Plasma	Electron Plasma	Ion Acoustic Wave	Electron Decay	Yes
Wave	Wave		Instability	Radar/SEE
Electromagnetic	Zero Frequency	Zero Frequency	Oscillating Two-	Yes
Wave	Electron Wave	Ion Wave	Stream Instability	Radar/SEE
Electromagnetic	Electromagnetic	Ion Acoustic Wave	Stimulated Brillouin	Yes
Wave	Wave		Scattering Instability	SEE
Electromagnetic	Electron Plasma	Electron Plasma	Two-Plasma Decay	No
Wave	Wave	Wave	Instability	
Electromagnetic	Electromagnetic	Electron Plasma	Stimulated Raman	No
Wave	Wave	Wave	Scattering Instability	
Upper Hybrid	Upper Hybrid	Lower Hybrid	Lower-Hybrid Decay	Yes
Wave	Wave	Wave	Instability	SEE
Electron	Electron	Ion Bernstein	Electron Bernstein	Yes
Bernstein Wave	Bernstein Wave	Wave	Decay Instability	SEE

DM2

SEE Observations Near the Third Electron Gyro Harmonic SIERRA Site: Glennallen, AK, 20 March 2004

SBS Generation is Simple

Coupled Wave Equations for Magnetized PDI

Pump Electromagnetic Wave at Frequency ω_P

$$\frac{\partial^2 F_P^{(O)}(z)}{\partial z^2} + (\omega_P / c)^2 [n_P^{(O)}]^2 F_P^{(O)}(z) = 0$$

• Scattered Electromagnetic Wave at Frequency ω_{s}

$$\frac{\partial^2 F_S^{(O)}(z)}{\partial z^2} + (\omega_S / c)^2 [n_S^{(O)}]^2 F_S^{(O)}(z) = -\frac{i(\omega_S / c)^2 (1 - [n_P^{(O)}]^2)}{4\omega_L} \frac{\partial \tilde{v}_{iz}^*}{\partial z} F_P^{(O)}(z)$$

• Scattered Low Frequency IA/EIC Wave at Frequency ω_{L}

$$\frac{\partial^2 \tilde{\mathbf{v}}_{iz}}{\partial z^2} + \frac{U_i \omega_L^2}{c_{IA}^2} \frac{\Omega_i^2 - U_i^2 \omega_L^2}{\Omega_{iz}^2 - U_i^2 \omega_L^2} \tilde{\mathbf{v}}_{iz} = \frac{iq_e^2 L_p}{8c_{IA}^2 m_e m_i \omega_L} \left[\frac{\partial (F_P^{(O)} F_S^{(O)^*})}{\partial z} \right]$$

Downshifted and Upshifted Spectral Line Formation by SBS

Stimulated Electromagnetic Emissions Measurements Near HAARP with Magnetic Zenith Beam

Time Sample of SBS Signal Demodulated from 5.6 MHz Audio Sped Up by Factor of 20

Date 2008/10/24, Time 19:37:50

Upshifted and Downshifted Spectral Line Formation by SBS

Stimulated Electromagnetic Emissions Measurements Near HAARP with Vertical Beam

SBS Matching Condition Theory

Manley-Rowe Equations

$$\omega_0 = \omega_S + \omega_{IA}$$
$$\mathbf{k}_0 = \mathbf{k}_S + \mathbf{k}_{IA}$$

$$\frac{\text{lon Sound Speed}}{c_{IA}^{2} = \frac{\gamma_{e}K_{B}T_{e} + \gamma_{i}K_{B}T_{i}}{m_{i}}}$$

Ion Acoustic/Electrostatic Ion Cyclotron Wave Dispersion

$$\omega_{IA}^{4} - (\Omega_{i}^{2} + k_{IA}^{2}c_{IA}^{2})\omega_{IA}^{2} + \Omega_{i}^{2}k_{IA}^{2}c_{IA}^{2}Cos^{2}\theta = 0$$

 Electromagnetic Wave Dispersion (+ for O-Mode, – for X-Mode)

$$\frac{2(\omega_{0,s}^2 - \omega_p^2)\omega_p^2}{\omega_{0,s}^2 - k_{0,s}^2c^2} = \left(2(\omega_{0,s}^2 - \omega_p^2) - \Omega_e^2 Sin^2\theta \pm \sqrt{\frac{4(\omega_{0,s}^2 - \omega_p^2)^2 \Omega_e^2 Cos^2\theta}{\omega_{0,s}^2} + \Omega_e^4 Sin^4\theta}\right)$$

SBS Matching Conditions for O-Mode HF Waves at 4.5 MHz and Ion Acoustic Waves

Mapping of the SBS EM Scatter Lines to the Source Altitude for the 5.6 MHz **SEE** Signal

Scattered SBS EM Wave Profile for 5.6 MHz Pump at the Magnetic Zenith with 3.6 MW Transmitter Power (1.66 GW ERP)

Full Wave Solution for EM Pump Wave at 4.5 MHz in the Ionosphere Over HAARP Maximum Value for [E3] = 2145 V/m

Determination of Electron Temperature at UH Resonance Altitude

• Assumptions $T_e \cong 3 T_i$ $\Omega_e, \Omega_i \text{ known}$ $\omega_0 = (\omega_p + \Omega_e)^{1/2}$

Time (UT)	19.48		19:58	
	10		10	.00
Line	SBS-2	SBS+2	SBS-2	SBS+2
•				
f., (Hz)	-30.56	30.56	-29 17	27.78
·IA (· ·=/	00100	00100	_0	
Te (K)	3506	3506	3176	2866
• (• •)	0000		0110	2000

24 October 2008

Ion Acoustic Speed

$$c_{IA} = \sqrt{\frac{\gamma_e T_e + \gamma_i T_i}{m_i}}$$
 where $\gamma_e = 1$ and $\gamma_i = 3$

• QL Solution

$$T_{e} = \frac{m_{i}c^{2}\omega_{IA}^{2}}{(\gamma_{e} + \gamma_{i}/3)4\Omega_{e}\omega_{0}} \frac{\Omega_{i}^{2} - \omega_{0}^{2}}{\Omega_{i}^{2}Cos^{2}\theta - \omega_{0}^{2}} \frac{\omega_{0} + \Omega_{e}Cos\theta}{\omega_{0}Cos\theta + \Omega_{e}}$$

Competing Processes for Generation of Downshifted Stimulated Electromagnetic Emissions

Transition Between Stimulated Brilliouin **Scatter Near** the Reflection Altitude and Mode Coupling on **Field Aligned** Irregularities at Upper Hybrid Wave Region

HF Interactions Near the Seconds Electron Cyclotron Harmonic Electron Density Profile for 28 October 2008

Parametric Decay Instabilities Observed by Stimulated EM Emissions

Parent Wave 0	Daughter Wave 1	Daughter Wave 2	Instability Name	Observed for HF
Electron	Electron Bornstein Weye	Ion Bernstein	Electron Bernstein	Yes
Demstem vave	Demstelli Wave	vvave		JEE

Stimulated Ion Bernstein (SIB) Generation

Simultaneous Parametric Decay Instabilities Observed by Stimulated EM Emissions

Parent Wave 0	Daughter Wave 1	Daughter Wave 2	Instability Name	Observed for HF
	I	[Γ	
Electromagnetic Wave	Zero Frequency Electron Wave	Zero Frequency Ion Wave	Oscillating Two- Stream Instability	Yes Radar/SEE
Electromagnetic Wave	Electromagnetic Wave	Ion Acoustic Wave	Stimulated Brillouin Scattering Instability	Yes SEE
Upper Hybrid Wave	Upper Hybrid Wave	Lower Hybrid Wave	Lower-Hybrid Decay Instability	Yes SEE
Electron Bernstein Wave	Electron Bernstein Wave	Ion Bernstein Wave	Electron Bernstein Decay Instability	Yes SEE

OTSI Growth

Artificial Electrostatic Waves in the lonosphere

- Ion Acoustic Waves Generated By Hypersonic Exhaust and High Power Radio Waves When Te >> Ti.
- Stimulated Brillouin Scatter (SBS) is the strongest SEE Mode Sometimes SBS Emissions is Stronger than HF Pump Return
 - SBS by Overdense High-Power HF in the Ionosphere
 - Discovered by Norin et al. [PRL, 2009] in February 2008.
 - This work described by Bernhardt et al., submitted to *Annales Geophysicae*, 2009.
 - SBS by Underdense High-Power HF to be Tested in August at HAARP
 - SBS Produces Extremely Strong SEE Emissions up to 10 dB Below the HF Pump Return
 - SBS Comes from Both the Reflection Region and the UH Resonance Height
 - The SBS Ion Acoustic Frequency
 - Offset from the Pump Frequency
 - Electron Temperature Measurements from the UH Resonance Region
 - Validation Possible with ISR Measurements of Te at EISCAT or Arecibo Heating Sites
- Stimulated Ion Bernstein Scatter and OTSI Discovery
 - First SEE Observations at HAARP
 - Slight Offsets from Ion Cyclotron Frequency Harmonics