

Small scale solar wind turbulence: Recent observations and theoretical modeling

F. Sahraoui^{1,2} & M. Goldstein¹

1 NASA/GSFC, Greenbelt, USA 2 LPP, CNRS-Ecole Polytechnique, Vélizy, France

Outline

- Motivations
- Solar wind turbulence : cascade vs dissipation below the ion scale ρ_i
- Different theoretical predictions on small scale plasma turbulence
- High resolution Cluster data to analyze small scale SW turbulence
 - 1. Clear evidence of a new inertial range below ρ_i
 - 2. First evidence of a dissipation range @ ρ_e
 - 3. Theoretical interpretation (KAW turbulence)
 - Conclusions

Turbulence in the Univers

M100 galaxy 10^{23} m

Eagle nebula $10^{18} m$

Ear

Sun-Earth ~*10¹¹ m*

Earth's atmosphere $10^7 m$

Clouds 10³ m

Soap film $10^{-1} m$

is observed from cosmological to quantum scales!

Controls mass transport, energy transfers & heating, *magnetic reconnection in plasmas(?)*, ...

Turbulent reconnection in the Magnetosphere

Can ULF turbulence drive transfers across the magnetopause?

Collisionless plasma \Rightarrow role of waves & turbulence

~10km

• Large scale ULF turbulence ($\sim 10^4 km$) in the magnetosheath may drive reconnection at small scales ($\sim km$) via a cascade process

• Reconnection as a mechanism to dissipate small scale turbulence (Sundkvist et al., PRL, 07) dissipates

Phenomenology of turbulence

NS equation:

• Idealistic image (even in NS): e.g., doesn't account for intermittency

• More complex situation in plasmas: - several eigenmodes/observables V,B,E..

- breaking of the scale invariance assumption at $\rho_{i,e} d_{i,e}$

Solar wind turbulence

Typical power spectrum of magnetic energy at 1 AU

What happens to the energy at and below the ion scale ?

Dissipation at f_{ci} (or ρ_i)

Leamon et al. 98; Goldstein et al. JGR, 94

Matthaeus & Goldstein, 82

Cascade below f_{ci} (or ρ_i)

Alexandrova et al., 08, Bale et al., 05

Theoretical predictions on small scale turbulence

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = \frac{1}{en} \mathbf{J} \times \mathbf{B} - \frac{\nabla P_e}{en} + \dots$$

1. Fluid models (Hall-MHD) —

- Whistler turbulence (E-MHD): (Biskamp *et al.*, 99, Galtier, 08)
- Weak Turbulence of Hall-MHD (Galtier, 06; Sahraoui, 07)

2. Gyrokinetic theory: $k_{//} << k_{\perp}$ and \longrightarrow $\omega << \omega_{ci}$ (Schekochihin *et al.* 06; Howes *et al.*, 08)

The Cluster mission

Four identical satellites of ESA

Objetives:

3D exploration of the Earth magnetosphere boundaries (magnetopause, bow shock, magnetotail) & SW

Fundamental physics: turbulence, reconnection, particle acceleration, ...

Different orbits and separations (100 to 2000km) depending on the scientific goal

View of a single spacecraft

42 experiments provide wave & particle data since December 2000

Wave consortium

WHISPER, LPCE, France

The data used here

Flux Gate magnetometer \Rightarrow magnetic field data up to ~1Hz

STAFF-Search Coil \Rightarrow magnetic

 $EFW \Rightarrow Electric field data$

field fluctuations

Two modes:

• 12Hz

• 225Hz

Ion spectrometer \Rightarrow Ion moments: N_i, V_i, T_i (4sec)

Electron Analyser \Rightarrow Electron moments: N_e, V_e, T_e (4sec)

Small scale solar wind turbulence

Position of the Quartet on March 19, 2006

		Position		
time:				
2006-03-1	9 20:30)		
Coordinate	System:			
GSE				
Satellite	Color	Х	Y	Z
Cluster-1		15.038	-6.569	-9.299
Cluster-2		15.139	-7.034	-8.672
Cluster-3		13.979	-7.397	-10.41

14.587

-7.292

-9.987

Cluster-4

FGM data (CAA, ESA)

Proton plasma data from CIS (AMDA, CESR)

High resolution magnetic field data from FGM and STAFF-SC

- 2. A clear evidence of a new inertial range ~ $f^{-7/3}$ below ρ_i
- 3. First evidence of a dissipation range $\sim f^{-4}$ at electron scale ρ_e

STAFF-SC noise level

 $B_{//}^{2}(FGM)$

 B_{\perp}^{2} (FGM)

B_{//}² (STAFF)

 B_{\perp}^{2} (STAFF)

Zoom on small scales

Further investigation: (B+E) field data

 Large scales (L>ρ_i): strong correlation of E_y and B_z in agreement with E=-VxB

FGM, STAFF-SC and EFW data

- 2. Small scales (L< ρ_i): steepening of B² and enhancement of E² (however, strong noise in E_v for f>5Hz)
 - ⇒ Good agreement with GK theory of Kinetic Alfvén Wave turbulence

k-spectra determination using the k-filtering technique

Interferometric method: it provides, by using a NL filter bank approach, an optimum estimation of the 4D spectral energy density $P(\omega,k)$ from simultaneous multipoints measurements Pinçon & Lefeuvre, 91; Neubauer & Glassmeier, 90

 $P(\omega,k)$ can be used to

1. Calculate experimental dispersion relations ⇒plasma mode identification (Sahraoui et al., 03a, 04, Tjulin et al., 05)

2. Determine 3D k-spectra (anisotropies, power laws, ...) Sahraoui et al., PRL, 06; Narita et al. 06

k-spectra at large scale

Cluster separations *d* limit the interval of study to $[f_{min}, f_{max}]$

 $f_{max} \sim k_{max} V/2p \sim V/d$ (otherwise aliasing occurs)

Sahraoui & Goldstein, in prep.

⇒ turbulence at large scale is quasi-2D Assumption used below: turbulence at small scales remains 2D

Theoretical interpretation of the small scales

- Solutions of the Maxwell-Vlasov equations using the observed plasma parameters:
- 1. The Kinetic Alfvén Wave extends down to $k\rho_e \sim 1$ with $\omega_r < \omega_{cp}$

- 2. Only a slight damping @ $k\rho_i \sim 1$ ($|\gamma| \sim 0.1\omega_r$) \Rightarrow may explain the slight stepening to $f^{-7/3}$
- 3. Strong damping @ $k\rho_e \sim 1 (|\gamma| \sim \omega_r)$ \Rightarrow may explain the strong steepening to f^{-4}

E/B estimation from KAW theory and from Cluster observations

 \succ Lorentz transform: $\mathbf{E}_{sat} = \mathbf{E}_{plas} + \mathbf{V} \mathbf{X} \mathbf{B}$

> Taylor hypothesis to transform the spectra from f (Hz) to $k\rho$

- 1. Large scale ($k\rho_i < 1$): E/B~V_A
- 2. Small scale $(k\rho_i > 1)$: $E/B \sim k^{1.1} \Rightarrow$ in agreement with GK theory of KAW turbulence $E^2 \sim k_{\perp}^{-1/3} \&$ $B^2 \sim k_{\perp}^{-7/3} \Rightarrow E/B \sim k$
- 3. The departure from linear scaling $(k\rho_i > 20)$ is due to noise in Ey data

Sahraoui et al., PRL 102, 231102 (2009)

Conclusions

- Evidence of a second inertial range of SW turbulence below the ion gyroscale ρ_i with the scaling ~ f^{-7/3}.
- > First evidence of dissipation below the electron gyrosclae $\rho_e \Rightarrow$ electron heating by turbulence cascade
- Remarkable agreement with the prediction of the Gyro-kinetic theory of the Kinetic Alfvén Wave turbulence.
- Consequences on solar wind heating and on modeling of magnetic reconnection