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• In a weakly turbulent plasma, resonant and nonresonant interactions of waves 
with particles occur; the energy is transferred among the participants

• First theories on the onset of turbulence (wave instability, growth, and saturation) 
were based on the lowest order effects and included wave-particle resonance of 
Landau type and/or wave-wave resonance involving exact matching of the wave 
frequencies and wave vectors 

• Terms describing nonresonant effects were usually ignored (relatively small 
magnitudes). However, such higher order effects can become dominant when the 
resonant effects are prohibited or saturated early

• The turbulent bremsstrahlung, or nonlinear plasma-maser, effect was first 
discussed more than 30 years ago by Tsytovich, Stenflo and Wilhelmsson [Phys. 
Scripta 1975] and by Nambu [PRL 1975]. This involves the nonresonant
interaction of plasma particles with a pair of plasma modes of large frequency 
difference; the wave energy is converted into particle energy and/or back

Background
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• In the lowest order: the wave-particle resonance is ω − k · v = 0, where ω  is the 
wave frequency, k is the wave vector, and v is the particle velocity

• In the next order: there are nonlinear three-wave interactions, with the wave 
frequency and wave vector matching ω1 + ω2 = ω3 , k1 + k2 = k3, with 1, 2, 3 
denoting the three waves involved. There can also be resonance of two waves at 
the beat frequency with plasma particles; this nonlinear scattering wave-particle 
resonance satisfies ω1 − ω2 − (k1 − k2) · v = 0

• The nonlinear plasma-maser (or turbulent bremsstrahlung) process involves 
one wave (ω, k) that satisfies the linear wave-particle resonance condition, and 
another wave (Ω, K) that satisfies neither the linear nor the nonlinear resonance 
condition:  Ω − K · v ≠ 0 and Ω − ω − (K − k) · v ≠ 0

• In the plasma maser, the energy of the resonant mode (ω, k) is transferred to the 
nonresonant mode (Ω, K) and plasma particles; the frequency difference |Ω − ω| 
can be quite large. The nonresonant wave-particle interactions are important for 
the global energy and momentum conservation, and can affect the overall 
evolution of the system

The physics
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Assume that the perturbation function of plasma particles of sort α  (= e,i for 
simplicity) can be decomposed into a regular and turbulent parts

The statistically averaged distribution Φα can evolve slowly in time: 
Φα = Φα (t;p)
Perturbations of the distribution function because of (turbulent wave) fields E(t,r) 
are:

We have for the regular part

and in the lowest order for the turbulent part

Perturbations of the distribution function
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For Fourier-components we have in the lowest order

For higher-order perturbations

Here, d12 = dω1dω2δ (ω − ω1 − ω2) dk1dk2δ (k − k1 − k2). For example,

Higher-order perturbations

(1)
,

iqf α α
α ω ωω

⎛ ⎞− ∂Φ
= ⋅⎜ ⎟− ⋅ ∂⎝ ⎠

k kE
k v p

6Modern Challenges in Nonlinear Plasma Physics, June 15-19, 2009, Greece

2 2 2 2

1 1 1 1

( ) ( )
, ,( 1)

, 12
i j j

j f fqf d α ω α ωα
α ω ω ωω

+
⎛ ⎞∂ ∂−
⎜ ⎟= ⋅ − ⋅
⎜ ⎟− ⋅ ∂ ∂⎝ ⎠

∫ k k
k k kE E

k v p p

2 2 2 2

1 1 1 1

4 4

1 1 3 3

(2) (2)
, ,(3)

, 12

(1)
,

12 34
2 2

i

i i ...

f fqf d

fq qd d

α ω α ωα
α ω ω ω

α ωα α
ω ω

ω

ω ω

⎛ ⎞∂ ∂−
⎜ ⎟= ⋅ − ⋅
⎜ ⎟− ⋅ ∂ ∂⎝ ⎠
⎡ ⎤∂⎛ ⎞− −∂

= ⋅ ⋅ −⎢ ⎥⎜ ⎟− ⋅ ∂ − ⋅ ∂⎝ ⎠⎢ ⎥⎣ ⎦

∫

∫ ∫

k k
k k k

k
k k

E E
k v p p

E E
k v p k v p

         



The turbulent bremsstrahlung (nonlinear plasma maser) effect

Linear dielectric plasma permittivity

Linear and nonlinear plasma responses
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Nonlinear third-order response
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From Poisson’s equation for longitudinal turbulent waves EΩK=KEΩK/K and 
Eωk=kEωk/k, with

we obtain 
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The imaginary part of the third-order response is 

It is closely associated to resonant, or quasilinear, particle heating: 

Imaginary part of the nonlinear response
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The nonresonant fields can affect the degree of the resonant particle heating or 
cooling. Since energy is continuously flowing between the resonant waves and 
the resonant particles, the turbulent bremsstrahlung mechanism provides a 
channel by which a part of the resonant energy is distributed to the nonresonant
waves and particles
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Nonstationary plasma systems
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Introduce the number of quanta of nonresonant waves with the energy W:

Quasilinear evolution: the system is (weakly) nonstationary

( ) ( )W d t N t= Ω∫ K KK
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Closed and open plasma systems
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When the nonstationarity is due to quasilinear evolution
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• Thus, in a closed plasma system, when particle distribution evolves 
quasilinearly due to interactions with resonant waves, the number of 
nonresonant quanta is conserved and there is no conversion of the resonant 
energy to the nonresonant waves
• This is the result of high degree of system symmetry and the absence of external 
sources and sinks. A violation can trigger the onset of energy flow in the plasma-
maser process such as in open and/or nonstationary plasmas
• Furthermore, this energy conversion process can be strongly modified by 
anisotropy even in a closed system
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The effect on particle distributions
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The particle distribution function can be renormalized, so that the contributions 
of the linear and nonlinear wave-particle interactions as well as possible 
nonstationarity are taken into consideration

The renormalized distribution is 
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A qualitative picture: quasilinear interaction
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• Assume randomly distributed localized regions (of average size l and separation 
L) of electric fields with constant magnitude E0 but randomly distributed signs 
(the average field of the entire system is zero)
• A particle moving through such a system will encounter the positive and 
negative field regions with the same probability
• Assume a positive particle charge (q>0) and positive initial particle velocity 
(v(0)>0). In a positive field region, it gains on average an amount of energy qE0l, 
and in a negative field region it loses the same energy. That is, when the particle 
passes a positive field region, its velocity is increased by qE0l /mv, and it will 
need a shorter time (t+) to reach the next region containing electric field. In the 
opposite case, its traveling time (t-) will be increased. The average change of the 
particle energy is

0 0 0 0 0 0

2 2 2 2
20
0

2 2
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dt t t L mv L mv

q E l q L E
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A qualitative picture: plasma-maser interaction
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• In addition to the resonant field regions, include in the system also a 
nonresonant (higher frequency) oscillating electric field. For simplicity examine 
the case when there is an integer multiple of the wavelength of the nonresonant
field, so that over the length l the particle will have an odd number of oscillations 
in the latter field
• When the particle velocity is increased it may not have the same number of 
oscillations (over the length l). When the particle leaves the resonant field region 
its energy will be slightly more (or less, depending on the sign of the resonant 
field) than qE0l. In a sufficiently weak nonresonant wave field this difference is 
proportional to the field strength E. That is, Δ ±= qE0l(1±αE), where α is a 
constant. The average energy change is

( )
2

2 2 2
0

2 1

d
v v
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q L E E
mv

α
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The Fermi-like pinball model
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• Fermi [Phys. Rev. 1949] proposed that the motion of a pinball bouncing between 
a fixed and an oscillating wall can be used as a model for the acceleration of 
cosmic rays to ultra-high energies
• In the corresponding mechanical model the particle receives kicks not from the 
distributed electric fields but from its bouncing (mirror reflecting) between two 
walls
• In the classical Fermi-Ulam problem only one wall moves with the amplitude A
and frequency ω
• The corresponding Fermi-like mechanical model for the plasma-maser process 
consists of many noninteracting particles bouncing elastically between two 
oscillating walls with the amplitude A1,2 and frequency ω1,2
• The walls act as energy and momentum sources and sinks for the particles, 
analogous to the wave fields in a weakly turbulent plasma. The oscillations, in 
particular the amplitude and frequency characteristics, of the walls then determine 
the dynamics and distribution of the particles
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The Fermi-like pinball model
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• The mapping for the two-wall problem: a particle 
located at Xn at tn and moving towards the right 
wall 2 will have its velocity mapped to
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Here A = A2/A1 , Ω = ω2/ω1, the prime denotes derivative with respect to the argument. The 
other notations follow that used in the Fermi-Ulam problem: Θn = ω1tn , un = vn/2A1ω1 ,  M = 
L/2πA1 , xn = Xn/A1 , F2(Θ) = sin(Θ), and Θn

c2 = Θn + [2πM − xn + AF2(ΩΘn
c2)]/2un is the time 

when the particle collides with wall 2. After the subsequent collision with the left wall 1:
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The pinball model: numerical simulation
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• Start with a given distribution of particles and velocities (a statistical description of a 
generalized Fermi system). The equations of motion are solved using variable time steps to 
obtain the time evolution of the energy of each particle as well as the velocity distribution 
function
• For the collision of particles with the walls consider several cases, including the possibility 
of multiple collisions, e.g., when the particle velocity is small compared with the velocity of 
the wall. The parameters used: the length of the system is L=1, the number of particles is N = 
1000–10 000, and 50 is the number of output distributions. That is, if ttot (typically ttot =104–
105) is the total calculation time, the distributions are sampled in 50 time steps ti (i = 1 – 50) 
and averaged over Δt = ttot /50. Note that Δt is not the same as the time step for the 
integration of the equations of motion; it is the time period for averaging the particle 
distribution function
• The particles are assumed to be initially located at Xj

init =A1+ (L – A1 – A1)( j – 0.5)/N, 
where j (=1, . . . ,N) denotes the jth particle and vj

init =(– 1)j uin(V1+V2)/2 is its initial velocity, 
where V1,2 = ω1,2A1,2 are the velocity amplitudes of the walls 1 and 2, and an ‘‘initial 
velocity’’ parameter uin has been introduced for convenience. Typically, for a time span of ttot
= 10000, corresponding to the output averaging time Δt = 200, a particle with an initial 
velocity of uin =3 will have bounced off the walls a few thousand times
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The simulations: small amplitude
of the second wall
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• Very small oscillation amplitude of the 
second wall: A2= 10-5 and A1= 0.1. The effect 
of the second wall is negligible, and an 
evolution is similar to that for the classical 
Fermi problem. The energy of a particle 
oscillates with time but after an initial or 
transient quasilinear growth it becomes 
constant on the average
• For relatively small initial particle velocities, 
a plateau eventually appears in the particle 
energy (momentum) distribution, Fig. 2(a)
• For larger initial velocities, a change of the 
character of the distribution function occurs 
associated with the formation of stochastic 
islands and a qualitative change of the particle 
orbits in the phase space
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The simulations: distributions
for increased amplitude of the
second wall
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• For uinit = 3 and A2 = 10-3–10-2: no end of the 
quasilinear-like evolution regime. The 
particles are accelerated to high velocities 
without entering any strong-correlation regime 
in the phase space. There is also no stochastic 
island nor invariant curves in the phase space
• The presence of the second oscillating wall 
leads to a destruction of correlations for a 
much wider parameter range than in the case 
of a single oscillating wall
• Note the lack of other qualitative changes 
beside the appearance of high-energy tails in 
the distribution function for the cases in Figs. 
3(b)–3(d), as opposed to that of Fig. 3(a)
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The simulations: discussion
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• High energy tails in the distribution function are formed because of modification of 
quasilinear diffusion due to the effect of the second oscillating wall. The initial stage of the 
quasilinear evolution is also affected by the nonlinear modulation, as exhibited by the 
change in the length of the transient period of stochastic diffusion when the second 
oscillating wall is added. The nonlinear terms proportional to  <V1

2 >< V2
2 > are  

responsible for the change of character in the quasilinear evolution
• Since the motion of the walls is fixed, the self-consistent nature of the plasma waves and 
their evolution are in general not covered by the model. That is, the simulation concentrates 
on the direct wave-particle interactions
• The result that the second oscillating wall can efficiently destroy correlations in the 
particle dynamics and thereby significantly change the character of the particle distribution 
at higher energies could not be predicted by a theory based on perturbation methods and 
the random-phase approximation
• Interaction among the particles, or generation and loss due to particle-particle collisions, 
are precluded. In dense low-temperature plasmas such collisions can dominate the purely 
dynamical phase randomization process. However, inclusion of these processes would 
change the physical nature of the problem, in particular with respect to the analogy to the 
classical Fermi process
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Conclusions
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• The plasma-maser process can affect weakly turbulent plasmas by converting the 
energy of resonant waves to nonresonant ones and plasma particles. As a result of 
this flow in the energy spectrum, the plasma system becomes nonstationary or/and 
inhomogeneous

• If the plasma system is closed, the quasilinear nonstationarity/ inhomogeneity 
effects cancel the nonlinear coupling of the resonant and nonresonant waves. 
Thus, an adiabatic invariant, the number of nonresonant quanta, is conserved, and 
there is no up- or down-conversion of resonant energy to nonresonant waves. In 
open plasma systems, the conversion becomes possible

• Because of the universal nature of the plasma-maser process, it can appear in 
many problems involving wave-particle interactions. Although not of the lowest 
order, this process can saturate, or smooth out, the predominance of the discrete or 
resonant nature of the natural modes and their interactions
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