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ABSTRACT

In this paper we address the problem of charged particle acceleration at oblique, fast-mode collisionless
MHD shock waves when magnetic turbulence exists in the regions upstream and downstream of the shock.
Specifically, we consider how the acceleration rate depends upon the angle 8; between the shock normal and
the mean upstream magnetic field. To handle the general situation where 6,, the turbulence level, the shock
strength, and the energy of injected particles can assume a range of values, we perform fully relativistic, test
particle simulations that involve integrating along particle phase space orbits in the shock turbulence system.
As an application of the numerical code, we study proton acceleration at shocks under conditions appropriate
to the lower solar corona to simulate prompt ion acceleration during solar flares. Particles undergo shock
acceleration through a combination of the shock drift and first-order Fermi processes. For protons injected at
100 keV and left in the system for 500 gyroperiods (~7 ms in a 50 G magnetic field) we obtain the following
results: (1) the percentage of protons accelerated above 10 MeV within 7 ms increases with increasing 6, from
0% at 8, = 0° to a maximum of 9% at 0, = 60°; (2) the case 6, = 75° produces the largest, most rapid energy
gains, with ~1% of the protons accelerated above 50 MeV; (3) for 45° < 0, < 75°, a separate proton popu-
lation with energies between 100 keV and 10 MeV is produced during a superfast acceleration phase lasting
only ~10 gyroperiods (~ 100 us) after injection; (4) we compare the peak energy reached at 6, = 0° and
energy spectrum produced at 6, = 75° with predictions from theoretical models, and find reasonable agree-
ment, although discrepancies do exist. We discuss the implications of the numerical results as they pertain to

time constraints and collisional loss processes during shock acceleration in the solar corona.
Subject headings: hydromagnetics — particle acceleration — shock waves — Sun: flares — turbulence

I. INTRODUCTION

The acceleration of ions and electrons by fast-mode, colli-
sionless MHD shocks has been the topic of vigorous research
activity over the past several years. Recent progress has been
summarized and reviewed by Toptyghin (1980), Axford (1981),
Drury (1983), Armstrong, Pesses, and Decker (1985), and
Forman and Webb (1985). Shocks exist, or are strongly
suspected to exist, in a variety of settings that span at least 14
decades of scale size and associated particle (ion) energies,
ranging from ~10'° cm and ~10° eV at the Earth’s bow
shock (e.g., Gosling et al. 1979; Lee 1982), to ~10%* cm and
~10'? eV at the galactic wind termination shock (Jokipii and
Morfill 1985). Shock-accelerated ions have been observed in
association with corotating shocks (e.g., Christon 1982) and
solar transient shocks in the inner (e.g., Van Nes et al. 1984)
and outer (e.g., Pyle et al. 1984) heliosphere. Some models have
relied upon shocks to accelerate ions and electrons to high
energies during solar flares (e.g., Acterberg and Norman 1980;
Lee and Fisk 1982; Ellison and Ramaty 1985; Decker and
Vlahos 1985b). Several years after the initial work by Axford,
Leer, and Skadron (1978), Krymskii (1977), Bell (1978), and
Blandford and Ostriker (1978), shocks bounding supernova
remnants remain the most attractive means of accelerating
galactic cosmic rays, at least to energies ~ 104 eV (Legage and
Cesarsky 1983).

There are three known mechanisms that will accelerate
charged particles to high energies (we refer to these as
“energetic particles ) at fast-mode shocks:

1. The shock drift mechanism (or more simply, drift
mechanism) accelerates a particle as the particle’s nearly helical
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orbit intersects the shock discontinuity several times during the
process of reflection or transmission at a shock encounter (e.g.,
see review by Armstrong, Pesses, and Decker 1985). This
mechanism is most effective when the angle 6, between the
upstream magnetic field and the shock normal satisfies 45° <
0, <90° (i.e., the shock is quasi-perpendicular or perpendicu-
lar [0, = 90°]), which is the range within which both the con-
vection electric field € = U x B/c (which is proportional to
sin 6, and parallel to the shock in the shock frame) and
increase in the magnetic field magnitude across the shock are
large. Drift acceleration during an encounter can be viewed as
resulting from a net displacement (due to an effective grad B
drift) of the particle’s gyrocenter along the electric field. The
energy gained, AE = qeAY, depends upon the drift distance
AY, which is a complicated function of the particle’s initial
velocity, and any wave-particle interactions that occur within a
gyroradius of the shock transition (Decker and Vlahos 1985a).
Energy gains due to drift are fast (< a few tens of gyroperiods)
and can be fairly large (~ 10 are more times the initial energy),
but in the absence of a return mechanism (e.g., pitch angle
scattering) particles will escape the shock and never return.
Examples of “pure” drift acceleration are shock spike events
observed at laminar, quasi-perpendicular shocks (e.g., Sarris
and Van Allen 1974; Decker 1983; Sarris and Krimigis 1985).
2. The first-order Fermi or diffusive shock acceleration
mechanism is a statistical process in which particles undergo
spatial diffusion along field lines and are accelerated as they
scatter back and forth across the shock, thereby being com-
pressed between scattering centers fixed in the coverging up-
stream and downstream flows (see, e.g., the review by Drury
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1983). Energy gains per diffusive cycle (consisting of diffusion
from upstream to downstream and back again) are largest at
turbulent shocks when 0° < 0; < 45° (i.e., the shock is quasi-
parallel or parallel [0, = 0°]) because in this range, the differ-
ence across the shock between the component of flow parallel
to a given field line is largest and, therefore, so is the net energy
gain per cycle (e.g., Tsurutani and Lin 1985). An important
prediction from diffusive shock acceleration theory is that, at a
planar shock with infinite diffusive regions on either side, the
steady-state momentum distribution function is a power law in
momentum with spectral exponent p, = 3r/(r — 1), where r is
the compression ratio across the shock. Particles can achieve
very high energies by diffusive acceleration, but since particles
spend most of their time random walking in the upstream or
downstream medium, the acceleration time can become exces-
sively large compared with, for example, the shock’s lifetime
(e.g., Legage and Cesarsky 1983). Examples of ion events with
predominantly diffusive features have been observed at inter-
planetary shocks (e.g., Scholer et al. 1983; Kennel et al. 1984;
Lee 1983).

3. Low-energy electrons that have gyroradii comparable to
or smaller than the shock thickness can interact with the elec-
trostatic turbulence (lower hybrid waves) driven by cross-field
currents in the shock transition. As a result of wave-particle
interactions, these electrons will diffuse in velocity space and
can gain hundreds of keV in energy at quasi-perpendicular
shocks (Lampe and Papadopoulos 1975; Tanaka and Papado-
poulos 1983).

Since we are interested specifically in ion acceleration at
shocks, we shall concentrate on mechanism (1) and (2) above. It
is clear that unless the shock is either parallel or perpendicular,
both the drift and first-order Fermi processes must be simulta-
neously operative if a sufficient level of turbulence exists in the
shock’s vicinity. It is also clear that, in general, intermediate
values of 0, (i.e., oblique shocks) are likely to prevail in most
astrophysical systems. For example, whether one considers (1)
an ensemble of planar shocks moving with randomly oriented
normals through a uniform field, (2) a single planar shock
moving through a magnetic field that is spatially disordered, or
(3) a spherical shock expanding into a uniform field, the expec-
tation value of 8, is 1 rad, or ~60°.

Jokipii (1982) was the first to include drift contributions in
diffusive shock acceleration theory explicitly by retaining the
curvature and gradient drift effects contained in the off-
diagonal terms of the spatial diffusion tensor. His solution to
the time-independent diffusion equation was obtained by
assuming that the drift terms are nonzero only at the shock
and that the particle distribution function remains nearly iso-
tropic right at the shock. In addition to predicting that the
steady state spectral exponent g, is independent of 6, (Bell
1978) also reached this conclusion), Jokipii’s (1982) solution
also predicts that a given energy is related to a unique drift
distance AY along the shock. As emphasized by Jokipii (1982),
this implies that the maximum energy gained is limited at
shocks having finite transverse extent. The solution also pre-
dicts how the total energy gain is partitioned, on the average,
between the first-order Fermi and drift processes for a given 0,.

In this paper we deal with the problem of time-dependent
particle acceleration at turbulent, oblique shocks, and apply
our model to the case of prompt ion acceleration during solar
flares. In order to treat the general case where 6, the level of
turbulence, the compression ratio r, and the particle injection
energy can assume a range of values, we have performed test

particle simulations. This involves numerically integrating

along particle phase space orbits in a system composed of a

shock with arbitrary 6, and predefined spectra of transverse

magnetic fluctuations upstream and downstream of the shock.
The model incorporates both the shock drift and first-order

Fermi processes in a natural way.

Our choice to integrate along particle orbits, as opposed to,
for example, invoking the cosmic-ray transport formalism of
diffusive shock acceleration theory or performing Monte Carlo
simulations (e.g., Ellison 1981) using a specified diffusive coeffi-
cient, was prompted by the following considerations. First, we
wanted the flexibility to study particle acceleration for shock
obliquities and particle injection energies that clearly violate
conditions necessary for strict application of the diffusion
equation. For example, for particle velocities less than or com-
parable to that required to transform from the shock frame to
the frame where the electric field vanishes on both sides of the
shock (the null frame), drift acceleration can produce energy
gains and associated pitch angle anisotropies that are very
large near the shock (Decker 1983; Webb, Axford, and Tera-
sawa 1983), even in the presence of wave-particle interactions
(Decker and Vlahos 1985a). Second, and related to the first
comment, retaining a particle’s instantaneous gyrophase and
pitch angle as well as its energy is essential for the proper
treatment of drift acceleration. This is especially true when
waves are present and the convenient approximation that par-
ticles conserve their magnetic moments through a shock
encounter is no longer valid (in this situation, there is no
unique null frame because of fluctuation in 6,). Third, orbit
integrations are the only way to treat particle transport and
acceleration in a field of large-amplitude waves (i.e., 0B = By),
a situation not uncommon at shocks in the solar wind. Finally,
we can study the important problem of time-dependent shock
acceleration and the evolution of energy spectra as functions of
the relevant parameters (i.e., 0, r, 3B/B,). At present, the code
is restricted to test particle acceleration at planar, infinitesi-
mally thin shocks.

As a specific application of the simulation code we have
considered the acceleration of protons under conditions
appropriate to the lower corona during solar flares. The
prompt acceleration of ions (and electrons) during solar flares
is a classic problem in solar physics for which a model that
includes the time-dependent acceleration of particles at a turb-
ulent, oblique shock is particularly well suited. We have found
that such shocks formed during solar flares can accelerate an
initial population of 100 keV protons to 50 MeV or more in
fewer than 10 ms in a 50 G magnetic field (an elapsed time well
below the instrumental resolution of existing instruments).
Because the shock drift process produces relatively large and
fast enmergy gains, the energy spectra produced at quasi-
perpendicular shocks extend 210 times higher than those at
quasi-parallel shocks within the same elapsed time (all other
quantities are held fixed).

The layout of this paper is as follows. In § IT we present the
basic elements of the simulation model (details are contained in
the appendices). In § I1I we give a brief background on particle
acceleration during solar flares, establish appropriate physical
parameters for use in the simulation code, and present the
numerical results. In § IV we discuss the implication of our
results concerning energy versus acceleration time, compare
our results for peak energy gained at a parallel shock with
predictions from diffusive shock acceleration theory, discuss
how our (time-dependent) energy spectra compare with
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Jokipii’s (1982) steady state solution, and summarize the impli-
cations of the simulation results for the prompt acceleration of
protons during solar flares, including the effects of Coulomb
collisional losses. In § V we give a brief summary of the results.

II. DESCRIPTION OF MODEL

a) Geometry and Main Assumptions

In this section we summarize the physical model used to
simulate charged particle interactions with a system consisting
of an oblique shock plus magnetic fluctuations on either side of
the shock. Specific details are discussed in the appendices.
Figure 1 shows the assumed geometry, as well as the relevant
reference frames as observed from frame K(X', Y, Z) fixed with
the shock. We assume that a planar, fast-mode, collisionless
MHD shock propagates along its normal # with constant
velocity ¥, through an ambient plasma which in general may
be flowing at constant velocity V;, such that |V, * #| < | V].
The shock surface coincides with the (Y-Z)-plane, and the up-
stream (subscript 1) and downstream (subscript 2) plasma bulk
flow velocities are U, = V|, — V= (U, cos 6, 0, U, sin ¢,)
and U, = (U, cos d,, 0, U, sin ,), respectively, with respect
to K. Let frames K{(&;, ;, ;) be those comoving with the up-
stream and downstream plasmas, such that the unit vectors of
the K, system are 2, = B,;, §, = ¥, and &; = J;, x 2,, where By, is
the unit vector along the mean field B, For nonrelativistic
flows, the magnetic field transforms virtually unchanged from
K; to K and is given by By; = (B, cos 0;, 0, B, sin 6;). The
assumption of infinite electrical conductivity implies that any

Shock (X = 0)

Upstream (1)

Downstream (2)

Shock frame K

F1G. 1.—Schematic of mean fields and plasma flow velocities in shock
frame K(X, ¥, Z). Frames K,(%,, ;, 2,) and K,(%,, §,, 2,) are fixed in the
upstream and downstream plasma, respectively.
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static electric fields in K; must vanish, so that in K there is the
electric field €, = — U; x B,,/c that is continuous across the
shock (Gaussian cgs units are used throughout).

Define M,, = U,/vs; as the Alfvén Mach number, where
va; = (4mp,)” V2B, is the upstream Alfvén speed, p, = n;m;,
is the plasma mass density, n, is the number density, and m, is
the ion mass. Also let 8, = n ky(Ty, + T,;)(B2,/87) "' be the
upstream plasma beta, where ky is the Boltzmann constant,
and T;, and T,; are the upstream electron and ion tem-
peratures, respectively. For given values of the upstream
parameter set (6, 6,, M 5, B,) and the ratio of specific heats y,,
we obtain the downstream set (0, 3,, M »,, ,) using the MHD
jump conditions (Helfer 1952) which, when combined, yield a
quadratic equation for the density compression ratio r =
p,/p,. After factoring out the trivial root r = 1, the resulting
cubic is solved for r subject to the condition 1 <r < (y, + 1)/
(y, — 1). The appropriate solution is then used to calculate the
other relevant downstream quantities. We assume throughout
that we are dealing with an electron-proton plasma, and that
v, = 5/3.

In the model we assume the length ordering d, < p < R, L,
where d;, p, R, L, denote, respectively, the shock transition
scale (or “thickness™), a test particle gyroradius, the shock
radijus of curvature, and the spatial extent of the shock in the
(Y-Z)-plane. The condition d, < p permits us to neglect the
electromagnetic microstructure associated with the shock tran-
sition, which is apparently valid in the perpendicular and
quasi-perpendicular shock regimes when p > thermal ion
gyroradius (Leroy et al. 1982). However, in the parallel and
quasi-parallel shock regimes, shock transitions are relatively
broad, disordered, and poorly defined (Greenstadt and
Fredericks 1979). Thus, as compared with the quasi-
perpendicular case, meeting the condition d; < p requires a
higher minimum energy for injected test particles. The planar
shock condition p < R, allows us to neglect shock curvature
effects (e.g., spatially dependent 6,) as particles drift along the
shock surface during shock encounters. Finally, if the shock is
of limited scale size L in the (Y-Z)-plane, the condition p < L,
prevents particles from drifting off the shock and out of the
acceleration region.

We shall assume that the charged particles of interest are
true test particles, that is, they are not self-consistently coupled
to the shock or to the wave system, or both. Also we assume
there are no loss mechanisms (e.g., Coulomb collisions, radi-
ation, etc.) that might remove a particle from the system or
degrade its energy. The validity of this latter assumption is, in
principle, testable once the orbit calculations have been per-
formed and quantities such as energy and acceleration time are
in hand. This is discussed in § I'V for the case of shock acceler-
ation in the low solar corona.

b) Particle Dynamics in the W ave-Shock System

A charged particle injected into the static, uniform system in
Figure 1 would encounter the shock only once. In the regime
45° < 6, <90° such an encounter would generally consist of
several orbital shock crossings with an energization via drift
along €, during the encounter (Decker 1983; Webb, Axford,
and Terasawa 1983), but then the particle would escape to
infinity in the absence of a mechanism to return it to the shock.

To model the situation that involves acceleration by both

the shock drift and diffusive processes, we introduce pitch

angle scattering by adding a zero-mean, random magnetic field
component b(z) = Xb,(z) + pb,(z) that, in either plasma frame

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986ApJ...306..710D

No. 2, 1986

K, or K,, varies only with z along B, = ZB,, is transverse to
B,, and is time independent (i.e., scattering is elastic in either
plasma frame). This form of b(z) insures that B(z) = B, + b(z) is
divergence-free. Scattering provides a mechanism whereby
particles experience multiple shock encounters and can there-
fore attain high energies through the combination of the shock
drift and first-order Fermi processes.

The problem then is to solve, in the appropriate plasma
frame, the six, ordinary, first-order, coupled differential equa-
tions

P(0) = (q/c)lp(t)/m] x {B, + b[z(1)]} , ey

X(t) = p(t)/m , 2
for particle position x = (x, y, z) and momentum p = (p,, p,, p.)
at time ¢t in either K, or K,, subject to the initial (injection)
conditions x(0) and p(0), where m=ym,, y=[1+
(p/moc)*1'?, and m, and q are the particle’s rest mass and
charge, respectively. The form of equation (1) emphasizes the
point that the field b sampled by a particle at time ¢ depends
implicitly upon ¢ through the particle’s motion along the mean
field B,. It is obvious from equation (1) that in either plasma
frame the magnitude of the momentum p = |p| or, equiva-
lently, the total energy W = ymyc? or kinetic energy E =
(y — )mgc? is a constant of the motion. The presence of a
static but spatially varying field b(z) in K, or K, implies that in
K the electric field e = —c U x B(X, Z, t) = ¢4 + (X, Z, 1),
where e(X, Z, t) = ¢ U x b(X, Z, t) since z = z(X, Z, t) (see
Appendix A). Thus, as viewed from K, particles respond to
spatially and temporally varying magnetic and electric fields.
We have elected for simplicity to integrate along particle orbits
in K, or K, and perform point Lorentz transformations to K
when necessary.

The details of the procedure for integrating equations (1) and
(2) are contained in Appendix A. Integration in either plasma
frame continues until (a) a shock crossing occurs, (b) a prede-
fined spatial boundary (i.e., an escape boundary) is crossed, (c)
a predefined time limit is exceeded, or (d) an error condition
associated with non-physical behavior is detected. When con-
dition (a) occurs, a frame transformation is performed from K,
to K, or from K, to K, depending upon whether the crossing
is from upstream to downstream or from downstream to up-
stream, respectively, and the integration is continued in the
new frame using the transformed position and momentum at
X = 0 as new initial conditions. When conditions (b) or (c) are
detected, the orbit calculation is stopped, and the particle’s
phase space coordinates [x, p] are recorded. Condition (d)
occurs when for some reason (e.g., round-off errors, too large a
time step size, etc.) kinetic energy is not conserved in K, or K,
while the particle propagates in either the upstream or down-
stream regions, respectively. If during its stay in either region
the particle’s energy change relative to the plasma frame
exceeds 5% of its energy at the last crossing, the calculation is
aborted, the particle is discarded, and a new particle is injected.

¢) Random W ave Field

As discussed in detail in Appendix B, we synthesize a realiza-
tion of the random field b(z) in a slab of width L along z by
superposing N monochromatic plane waves. The amplitude of
each such Fourier component is determined from a specified
power spectrum P(k) in wavenumber k in the interval [kg, k;].
In this paper we assume that b(z) is composed of circularly
polarized Alfvén waves with wave vectors along B,, and we
further assume for simplicity that the phase velocity vy, =
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v, = 0 (v, is the Alfvén speed), which from the wave dispersion
relation w = v, k implies wave frequencies & = 0. Consequent-
ly, we neglect the induced electric field | e, | & (v5/c)| b, | of each
component with wavenumber k and wave magnetic field by(z).
Thus, for example, stochastic acceleration in the fluctuating
electric field of MHD turbulence (e.g., Kulsrud 1979) is pre-
cluded in our model. The neglect of wave phase velocities in the
plasma frame is equivalent to neglecting the effect upon par-
ticle motion of the wave electric field compared with the effect
of the wave magnetic field, an assumption that is valid for
particles with speed v > v, (Jokipii 1971), a condition satisfied
in our model. The inclusion of time-varying electric and mag-
netic fields associated with longitudinal and transverse waves
is an additional and possibly important complication we do
not address, although such studies, not directly related to
shock acceleration, have been made for ion propagation in a
turbulent plasma environment such as that in the Earth’s mag-
netosheath (Brinca 1984).

d) Injection Procedure

We inject particles into the wave-shock system as follows.
For a chosen region (upstream or downstream), we choose an
injection kinetic energy E, and assume an isotropic distribu-
tion in momentum space. A particle’s initial pitch angle o, and
gyrophase angle 4, are obtained using a random number gen-
erator to place the particle on a sphere of radius p, = [Eo(Eq
+ 2mg c?)]12¢ ™1, with equal probability of occupying any unit
solid angle. Then, p,, = p, sin &y €0s Ay, Po, = Po Sin &, sin
Ao, and po, = p, cos oy. Distributions isotropic within an
angular interval oy, < oy < 0y, (6.8, beam injections for
oy, = 0°, 09, < 30°) are easily obtained by discarding particles
outside that range. Injection positions x, are obtained by
placing the guiding center of each particle at the same point,
this point being at least one gyroradius p, from the shock
surface. A different realization of b(z) can be used for each
particle. However, since the conditions h, < z, < L and py =
h, are generally met in our simulations, we saved computer.
time by keeping the sample realization for 100 particles and
simply shifting the origin of the realization by a random length
between 0 and L, while maintaining periodic boundary condi-
tions as described in Appendix B. This technique produces
particle distributions that do not differ in a statistical sense
from those obtained by using a different realization for each
particle.

III. PROMPT ACCELERATION OF IONS IN SOLAR FLARES

a) Background

Solar flares often accelerate ions and electrons to very high
energies. The details of the acceleration processes are not well
understood (Vlahos et al. 1985), but until recently the main
trend was to divide the acceleration process(es) into two phases
(see detailed discussion by Ramaty et al. 1980). During the first
phase, electrons are heated and accelerated up to several
hundreds of keV simultaneously with the energy release. These
mildly relativistic electrons interact with the ambient plasma
and magnetic field and generate X-ray and radio emission.
During the second phase, usually delayed from the first phase
by several minutes, ions and relativisitic electrons are acceler-
ated. Thus, particles accelerated during the first phase serve as
a seed population for the second phase. These ions and rela-
tivistic electrons can interact with the solar atmosphere, gener-
ating gamma-ray continuum, gamma-ray line, and neutron
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emission, or they can escape into interplanetary space. In
several flares, the second phase coincides in time with the start
of a type II burst in radio emission, which is believed to be the
signature of a shock wave (see Frost and Dennis 1970).

The theoretical work on particle acceleration during solar
flares has also emphasized the two-phase acceleration scheme,
and various acceleration mechanisms have been proposed.
During the first phase, DC electric fields, resistive heating, and
wave acceleration can energize the electrons and ions (Vlahos
et al. 1985). During the second phase, ions and relativistic elec-
trons can be accelerated by MHD turbulence, shock waves, or
both (see, e.g., Barbosa 1979; Ramaty 1979; Acterberg and
Norman 1980; Melrose 1983). Achterberg and Norman (1980)
suggested that the delay between the first and second phase is
due primarily to the fact that the shock is initially formed in
the low, dense corona (n = 10'! cm~3) where the rate of
energy gain by diffusive acceleration at parallel shocks is less
than the rate of energy loss due to Coulomb collisions. Thus,
the shock must travel several scale heights before becoming an
efficient accelerator. Ellison and Ramaty (1985) used the diffu-
sive acceleration theory at parallel shocks to analyze the
spectra of electrons, protons, and alpha particles for several
solar energetic particle events and found that for each major
event a unique shock compression ratio in the range r = 1.5-3
produces spectra in good agreement with observations.

It has been proposed (Bai et al. 1983) that ~ 100 keV elec-
trons accelerated near the top of a magnetic loop can precipi-
tate along the legs of the loop and heat the dense
chromospheric plasma. The “evaporated ” portion of the dense
chromospheric plasma will stream toward the corona along
the loop and will form two counterstreaming hydrodynamic
“shocks.” Bai et al. (1983) conjecture that if 1 MeV protons
preexist in the loop, they will undergo further acceleration at
the counterstreaming “shocks.” Smith and Brecht (1985)
studied this scenario and concluded that the shock formation
time is ~2 s. They also concluded that particle acceleration
above 3 MeV is unlikely unless the shocks become turbulent,
and particle trapping between the two converging shocks is
maintained by scattering in this turbulence rather than by
simple adiabatic mirror reflections which occur at laminar,
oblique shocks.

The two-phase acceleration scenario was questioned recent-
ly in light of results from the Gamma-Ray Spectrometer (GRS)
aboard the Solar Maximum Mission. In several flares (Chupp
1984), particles were accelerated to energies up to 100 MeV in
fewer than 2 s (the resolution of the instrument). These new
results posed an important theoretical question: How fast are
shocks and MHD turbulence formed and how quickly can
they accelerate ions to 50 MeV or more in the solar corona?
We address this question below.

b) Shock Model and MHD Turbulence Spectrum

We analyze the acceleration of ions by using the following
model. We assume that during a flare, magnetic energy is con-
verted to particle energy through heating of the bulk plasma
and acceleration of particles in the tail of the plasma distribu-
tion. The high plasma pressure inside the energy release
volume expands in all directions since the plasma beta exceeds
unity. A piston-driven perpendicular or oblique shock is
formed in a few microseconds (Papadopoulos et al. 1985). We
assume that the flare-driven oblique shocks are embedded in
MHD turbulence upstream and downstream of the shock.
These small-scale, pressure-driven shocks that are formed in

DECKER AND VLAHOS

Vol. 306

the vicinity of the energy release volume should not be con-
fused with the large-scale coronal shocks that are responsible
for the type II bursts. The correlation between such large-scale
shocks and those discussed here is an important problem, but
is beyond the scope of this paper. The shock and plasma
parameters used in all computer runs discussed in this paper
are listed in Table 1. Since 6, is the only parameter that was
varied from run to run, we also list in Table 1 the relevant
downstream quantities and the theoretical slope of the energy
spectrum (§ IV) for each 6, used.

We now address two important questions. First, what is the
source of the MHD turbulence we have assumed in our
model? Second, do we expect oblique shocks to be formed in
solar flares? As to the first question, we note that the source(s)
and spectral form of MHD turbulence are, of course, largely
unknown in the vicinity of a flare-driven shock. Possible
sources of the upstream turbulence include the turbulent pre-
flare plasma and Alfvén waves driven by energetic (2 100 keV)
ion beams streaming upstream from the shock following reflec-
tion from the shock or from leakage from the hot flare plasma
downstream, or from both. The excitation of Alfvénic turbu-
lence from ion beams has been discussed extensively in relation
to the wave-particle activity upstream of the Earth’s bow shock
(see, e.g., Gary, Gosling, and Forslund 1981; Gary 1985;
Sentman, Kennel, and Frank 1981; Winske and Leroy 1984).
Possible sources downstream include the upstream turbulence

TABLE 1

INPUT AND DERIVED PARAMETERS FOR SIMULATION OF ACCELERATION AT SOLAR
FLARE SHOCKS

A. UPSTREAM

INPUT
Parameter Value

| U 33x 108 cms™!

Boy coveeninnn 50 G

(NPT 0°, 15°, 30°, 45°, 60°, 75°

O veenniianns 0°

Ry ceevinianen 10'° cm™3

Tye+Ty;.... 10’ K

DERIVED
Parameter Value

Dageenens 1.1 x 108 cms™!

M, .... 3

| 0.14

Qoy -een eBy,/mg,c =48 x 10° s~*

Tq evens 21/Qy, = 1.3 x 107 s

B. DOWNSTREAM®
6, 0, 6, B,/B, r=p,/py U,/U, r

0% vt 0° 0° 1.00 3.85 0.26 1.03
15, 54 22 1.64 3.58 0.30 1.08
30, 67 35 2.20 322 0.34 1.18
45 74 21 2.50 3.00 0.36 1.25
60...counnen.. 79 15 2.63 2.83 0.37 1.32
75 i, 85 8 2.70 2.75 0.37 1.36

 All parameters derived.
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convected through and amplified by the shock, as well as turb-
ulence excited by the flare release mechanism.

Figure 2 shows the spectral form P(k) assumed for all com-
puter runs (see Appendix C). The spectrum extends from wave-
number kg to k;, has a correlation length z,., and exhibits a
spectral slope = —5/3 for k> z_'. For b(z) = ¥b,(z) + pb,(2)
we set 62 = 62 = &%/2, where & is the variance of the total
random field defined by equation (C6). For the quantities
described in Appendix B we set p = 12,q = 6,and z, = 10° cm,
so the number of Fourier components that comprise b(z) is
N =2!'2=4096, the realization length L=L+h, =
26z, = 6.4 x 10° cm, the grid spacing h, = 2%/z, = 1.56 x 103
cm, kg =9.8 x 1077 cm, and k; = 2.0 x 10~ cm. The func-
tion P(k) was evaluated for each Fourier component and was
used along with randomly generated phases to synthesize a
particular realization of b(z). Input values 6% = 0.2 upstream
and 3 = 0.4 downstream yielded actual variances of ¢? = 0.19
and o3 = 0.38 upon statistical analysis of b(z). Figure 2 shows
the upstream spectrum for B, = By; = 50 G. Note that the
chosen spectral form provides power for resonant pitch angle
scattering (i.e., proton gyroradius ~ k™) of protons (top scale
of Fig. 2) with energies spanning the range of flare-associated
energies from 100 keV to 10 GeV. We set the escape length A;
(Appendix A) and field damping length X¢ (Appendix B) to
108 cm, so that virtually no particles escape during a typical
run.

Now, in response to the second question posed above, we
note that the angle 6, between the magnetic field upstream of

Resonant proton energy (MeV)
104 103 102 10" 100 1071

L | L1 1 1
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Spectrum of
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F1G. 2.—Wave number power spectrum assumed for simulations of proton
acceleration at coronal shocks. For the upstream region shown here, the mean
magnetic field strength B, = 50 G, the correlation length of the power spec-
trum z, = 10° cm, and the variance o = 0.19B3. The scale at the top shows
the kinetic energy of protons with gyroradii p = k™', indicating the power
available for resonant pitch angle scattering.
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FiG. 3—Schematics of three simplified flare models and associated shock
geometries: (a) formation of quasi-perpendicular shocks at the top of a mag-
netic loop; (b) formation of quasi-parallel shock along coronal streamer; (c)
formation of oblique shock by several interacting loops.

the shock and the shock normal depends strongly on the
geometry of the ambient magnetic field in the vicinity of the
flare energy release. In Figure 3 we show three simplified flare
models (Sturrock 1980). A quasi-perpendicular shock will be
formed at the top of an emerging flux tube (Fig. 3a), a quasi-
parallel shock will be formed when a shock propagates along a
coronal streamer (Fig. 3b), and finally an oblique shock will be
formed when several loops interact to produce a shock that
expands against an upstream magnetic field that is randomly
oriented. In this latter case the average angle between the
shock normal and the ambient upstream magnetic field is

1 2n n/2
0, =— J d¢ f 0, sin 0,d0, ~ 57°.
2 Jo o

It is clear that oblique shocks can be formed in the topologies
shown in Figures 3a and 3b if the field and shock surface are
not perfectly aligned. We conclude that oblique shocks are
probably common in solar flares. In addition, when MHD
turbulence in the form of parallel propagating Alfvén waves is
added, 0, can change radically with time. For example, in the
lower panel of Figure 4 we show the x-component b (z) for a
short segment of a realization of b(z) as a function of distance z
(in units of z,) along the mean field (note ¢2/B3 = 0.1). The
upper panel shows the difference 6(z) — 0, between the instan-
taneous value of 6(z) and the mean value 6,. Although 0(z)
averages to 0, over the entire realization, fluctuations about 6,
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45 I U B A T I R A (t/10, = 0-85, 125-175, 180-220, and 220-260) where the par-
» 6 (z) =64 - tan~1 [by (z)/Bo] ticle escapes upstream with mean energy E; is scattered
30 n through 90° pitch angle in the incoming wave field (periods A,
53 [ : D, F, and H), and returns to the shock with mean energy E, .
Z 15+ We estimate the maximum energy gains in each of these epi-
< n \ sodes and compare them with Figure 5 using the following
B o7 x 4 simple argument. Although the process whereby a charged
N H ! particle gains energy in the shock frame by scattering off the
= -150 = convecting wave field is electrodynamic, we consider the
| N mechanical analog of a particle constrained to move along a
-30t . wire [the mean field B = By(cos 0, 0, sin 6)] along which are
- 7] fixed massive scattering centers (magnetic fluctuations). If in
_45 S R R N L. 1.1 . 1 the laboratory frame (shock frame K) the wire is moving with
— T T T T T T T T ] velocity U = U(cos 4, 0, sin J), then the component of U along
~0.8 L — By is U = U cos (§ — 9). Assuming nonrelativistic motion,
[ ] the change in the particle’s speed along B, after undergoing
elastic scattering in the moving wire frame (plasma frame) is
é’—OA ] Av=v,—v;= +2U,s0
N .
} 0.0 7 S S Nl l--d-f---¥-- . 1 Ef=mv}/2=E,-i2mviU||+2mUﬁ,
or
04 o -0 ] (E; — E)/Eqo = AE/Eq = 4U/0o)[U /oo + (E/E9)"*] ,
)
0.8 J where v, is the injection speed and the upper and lower signs
| IS T PR B B | 1] indicate scattering off approaching (energy gain) or receding
0 2 4 6 8 (energy loss) scattering centers, respectively. Inspection of
z (z¢) Figure 5 shows that for the four energy gain episodes (A, D, F,

F1G. 4—Bottom: Sample of x-component of random magnetic field realiza-
tion along z-axis (mean field direction) in units of correlation length z, of the
power spectrum. Top: Difference between instantaneous angle 6(z) and mean
angle 0, between magnetic field and shock normal as a result of fluctuations
b,(z) in bottom panel.

of ~20° = ¢,/B, or more are common. These fluctuations are
significant to charged particles that respond to the local field
and therefore the local 6, not 6, at shock crossings.

¢) Numerical Results

Figures 5 and 6 show sample proton trajectories for mean
angles 6, = 15° and 6, = 60°, respectively. The protons were
injected upstream with energy E, = 100 keV measured in the
upstream plasma frame. We define the scale time ty; =
eBy;/moc = 1.3 x 1077 s (nonrelativistic upstream gyroperiod)
and scale length py; = vy79,/2n = 9.1 x 10> cm (upstream
gyroradius of a 100 keV proton with speed 4.4 x 10% cm s™1).
In Figures 5a and 6a kinetic energy E (in units of E,) in the
shock frame is shown versus distance X/p,, from the shock
(upstream at left, downstream at right of dashed line at X = 0).
The elapsed time of each orbit is given at the top of Figures 5a
and 6a. An alternate representation of the orbits is given in the
right side of Figures 5 and 6, where in Figures 5b, 6b and 5c, 6¢
E/E, and X/p,,, respectively, are shown versus time t/7,.
Periods A-I in Figure 54 and A-H in Figure 6a are indicated
by the corresponding symbol at the top of Figures 5b and 6b,
respectively. In Figures 5a and 6a the upstream magnetic fluc-
tuations convect toward the shock from the left with speed U,
and the downstream magnetic fluctuations convect away from
the shock with speed U, < U, (Table 1).

For the case 6, = 15° (i.e., quasi-parallel shock) in Figure 5,
energy gains result primarily from the first order Fermi
process, i.e., diffusive acceleration. There are four episodes

and H), E/E, =~ 2, 8, 20, and 33, E;/E, = 5, 17, 30, and 48, so
AE/Ey = 3,9, 10, and 15. For §, = 15°, 6, =0°,and U, = 3.3
x 10% cm s™!, U} /vy = 0.72 for E, = 100 keV, and using the
upper sign in the above equation yields AE/E, ~ 6, 10, 15, and
19, in reasonable agreement with the simulation results. Note
that the estimated energy gains are consistently larger than
those in Figure 5 since we have neglected the effect of finite
pitch angle, so the actual change in parallel velocity is gener-
ally smaller than the maximum value of 2U | used above.

There are also three episodes of energy loss (B, C, and I) in
Figure 5 due to scattering off receding downstream waves.
Inspection of Figure 5 reveals that E,/E, ~ 5, 12, and 47,
E;/Ey ~ 4, 10, and 43, so AE/E, ~ —1, —2, and —4. For
0, =54°,6,=22°,U, =86 x 10’ cms~* (Table 1), U, /v, =
0.17, and using the lower sign in the above equation yields
AE/E, ~ —14, —2.2, and —4.5, again in reasonable agree-
ment with the simulation results. The fact that the energy
gained by scattering off approaching upstream waves exceeds
that lost by scattering off receding downstream waves over a
cycle of motion from upstream to downstream and back again
is the simple physical process responsible for diffusive shock
acceleration (Bell 1978). However, we should stress that even
for 6, = 15°, there are abbreviated episodes of shock drift
acceleration (/7o & 100-105 and period E) or direct reflection
from the shock (periods E and G), or both. The second process
serves to reinject particles directly back upstream, thereby
bypassing the downstream energy-loss portion of the diffusive
cycle.

For the case 6, = 60° (i.e., quasi-perpendicular shock) in
Figure 6, energy gains result primarily from shock drift acceler-
ation. There are three major episodes (t/74; ~ 0-4, 52-54, and
60-62) of rapid acceleration during drift along the shock, as
well as two other periods (f/79, & 12 and 37-39) of direct
reflection accompanied by smaller energy gains. There are also
two episodes of first-order Fermi energy gains (t/1,, ~ 12-37
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FiG. 5—Sample orbit for quasi-parallel shock 8, = 15°. Left: energy vs. X orbit in shock frame, where X is the distance from the shock (X < 0 upstream; X > 0
downstream). Elapsed time of orbit is 270t,,. Right: evolution of energy (upper) and X-component of particle’s position vs. time. Points A-I marked along orbit in

left panel are indicated at the top of the right panels. See text for details.

and 39-47) and three episodes of small energy losses (t/74; =~
47-49, 49-52, and 54-60). However, the striking feature of
Figure 6 is that the fastest (~few gyroperiods) and largest
energy gains occur during the drift phases of acceleration. In
comparison, the diffusive gains are relatively slow (~tens of
gyroperiods) and small. The particle at the 60° shock gained
nearly 5 times more energy than that at the 15° shock (E/E, =
185 vs. 40) and did so in less than one-fourth the time (t/74; &
65 vs. 270).

The particles shown in Figures 5 and 6 are among those that
underwent the largest energy gains at the 15° and 60° shocks,
respectively. However, they are representative examples of the
basic physics involved in the diffusive and shock drift pro-
cesses, and also nicely illustrate how each process predomi-
nates in the quasi-parallel and quasi-perpendicular shock
geometries, respectively. This latter point is even more appar-
ent in Figure 7, where we have plotted energy E (in units of E,
on left axis, in MeV on right axis) versus acceleration time
t./Toy after a total elapsed time of 5007, = 6.6 ms for each of
~2100 protons injected at shocks with 6, = 0°, 15°, 30°, 45°,
60°, and 75° (all other parameters held fixed). Plotted is the
total energy against the time taken to reach that energy, or
equivalently, the time of the particle’s last shock crossing.
Points with t,/75, < 500 imply that these particles spent the
time 500 — t,/7,, diffusing without net energy change in the

upstream or downstream regions. We shall discuss this and the
following figures more fully in § IV.

Figure 8 shows energy spectra produced by binning the
single particle results of Figure 7. The quantity Af/AE is the
fraction of particles with energy E within AE centered on the
logarithmically spaced plot points. For easy comparison, the
spectra are shown separated from the unshifted 0° case by
factors of 10, increasing from 10* at 15° to 10° at 75°. Each
spectrum includes both upstream and downstream particles.
For reference, the fraction of particles left downstream after
6.6 ms is 0.72, 0.74, 0.71, 0.81, 0.94, and ~ 1.0 for 6, = 0°, 15°,
30°, 45°, 60°, and 75°, respectively. Statistical standard devi-
ations, significant only at the highest energies, are within twice
the size of the plot point. By requiring a minimum of 10 par-
ticles per energy interval, we excluded from Figure 8 the few
highest energy particles in Figure 7. Figure 9 shows the frac-
tion of particles from Figure 7 with energy above that indi-
cated on each curve as a function of 6;. Only fractions above
the 10~ 2 level (=20 particles) are shown.

IV. DISCUSSION

In this section we discuss the effects of shock obliquity on
acceleration rate, compare specific results from the simulation
with those predicted by existing theoretical models, and esti-
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F16. 6.—Sample for quasi-perpendicular shock 8, = 60°. See Fig. S caption and text for details.

mate the effects of Coulomb collisional losses during shock
acceleration.

a) Energy versus Acceleration Time

Figures 7, 8, and 9 reveal the following features. (1) The
percentage of protons accelerated above 10 MeV within 6.6 ms
increases with increasing 6,, from 0% at 6, =0° to a
maximum of 9% at 6; = 60°. (2) The case §, = 75° produces
the largest, most rapid energy gains, with ~ 1% of the protons
accelerated above 50 MeV. (3) As 6, increases from 0° to 75°,
the fraction of particles available for further acceleration stead-
ily declines (note the logarithmic time scale), as indicated by
the decrease in the density of points near the 6.6 ms cutoff. For
0, = 75°, and to some extent, for 8§, = 60°, there is a dropout
of points at lower energies for t,/75; = 60; thus, at 75°, the
spectrum from 100 keV to =10 MeV was completed within
6.6 ms. (4) For 0, = 75° 60°, and, to some extent, 45°, a
separate proton population extending to ~ 10 MeV was accel-
erated during superfast phase, with an upper energy cutoff
indicated by the dashed diagonal lines. In summary, the energy
distribution produced during a finite acceleration time is a
strong function of 0, with the first-order Fermi and shock drift
processes predominating in the quasi-parallel and quasi-
perpendicular shock geometries, respectively.

An important dimensionless parameter in the study of shock
drift acceleraton at oblique shocks in the scatter-free limit is

the ratio Vy/v. Here v is the particle velocity and Vy =
U, sec 0, is the transformation velocity along B,, from the
upstream plasma frame to the null electric field frame where
the convection electric field vanishes identically on both sides
of the shock [such a Lorentz transformation is possible as long
as 0, <6, =cos YU,/c) > 89%4 for U,/c < 10~ 2]. The ratio
Vi/vo, Where v, is the injection velocity of 100 keV protons, is
plotted in Figure 10a (left-hand axis) versus 6,. The right-hand
axis shows the ratio of the associated energies. The ratio Vy/v,
varies from 0.75 to 2.9, from 6, = 0° to 75°. It is well known
that the scatter-free shock drift process yields the largest
energy gains per shock encounter when Vy/vy = 1 (e.g., Decker
1983; Webb, Axford, and Teresawa 1983). In this case, peak
energy gains per encounter at quasi-perpendicular shocks can
be several times larger than the initial energy. When a spec-
trum of waves is added, peak energy gains per shock encounter
can in turn be several times larger than those in the scatter-free
case (e.g., Fig. 6). This occurs because of spatial and temporal
fluctuations in 6, (Fig. 4) and because of pitch angle scattering
during drift acceleration (Decker and Vlahos 1985a). As a
result, a small fraction of particles can gain up to ~100 or
more times their initial energy during essentially one encounter
with a quasi-perpendicular shock. The superfast (¢,/74; < 10)
energization from 100 keV to ~ 10 MeV for 8, = 45°, 60°, and
75° in Figure 7 results from such intense drift acceleration
following injection at optimum velocities vy & Vy.
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F1G. 8.—Energy spectra produced by binning single particle results in Fig.
7. Spectra are separated from the unshifted 0° case by factors of 10 increasing
from 10 at 15° to 10° at 75°. Statistical standard deviations are within twice
the width of the plot points. A scale for spectral slopes between 1 and 2 is also
included.

It is important to note that the statistical fluctuations in 6,
and, therefore, ¥y imply the nonexistence of a Lorentz trans-
formation to any global null frame. Specifically, as the rms
amplitude 6B of the random field increases from zero, the use
of a null frame based upon the mean value of 6, becomes
increasing suspect. When 6B & B, the null frame and concepts
associated with it, such as conservation of particle magnetic
moments and energy during shock encounters, are mean-
ingless.

For a given turbulence level, the shock obliquity also plays
an important role in determining how easily particles can reen-
counter the shock. This effect is illustrated in Figure 10b. We
assumed for simplicitly that particles with the indicated speeds
(v/ve = 2, 5, and 10) escaped the shock beamed along the mean
upstream or downstream magnetic fields. Plotted as a function
of 0, is the maximum change in pitch angle Aa,,,, required for
the particle to reencounter the shock from upstream (left axis)
or downstream (right axis). This is the maximum pitch angle
change because particles generally escape the shock with a
range of finite pitch angles. For example, when v/v, = 2, a
particle that escapes upstream must scatter through ~ 68° for
0, =0° and ~40° for 8, = 60° in order to reencounter the
shock; however, for 8, > 68°, v < Vj, so escape upstream is
kinematically impossible. If the same particle were to escape
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downstream, it must scatter through ~112° for 6, = 0° and
through ~ 140° for 6, = 60° in order to catch up with and
reencounter the shock; again, for 8, > 68°, v < ¥V}, so once left
downstream, this particle can never reencounter the shock.

As v/v, in Figure 10b increases, Vy/v decreases [except for
nearly perpendicular shocks where 6, ~ cos™}(U,/v)], and the
upstream/downstream  asymmetry decreases as  Aa,,
approaches 90° in each region over a large range of #,. The
main point is that in the quasi-perpendicular regime injected
particles can rapidly attain high energies by successive episodes
consisting of reflection upstream and scattering back to the
shock, since the necessary scattering angle is relatively small
and the energy gain at reflection is relatively large. However,
once transmitted through the shock, the particle has a difficult
time returning to the shock since the particle must scatter
through a relatively large angle in order to reencounter the
receding shock. This scenario is supported by features in
detailed orbit plots and the distribution in Figure 7.

Finally, we note that due to fluctuations in 6, about its mean
value, particles may find it easier or harder to reencounter the
shock as compared to the situation where 6, is the mean angle.
Particles that undergo multiple shock encounters will generally
see a different 6; at each encounter. These fluctuations are
particularly important at quasi-perpendicular shocks where
small variations in 6§, produce large variations in ¥, through
its dependence upon sec ,. This provides an additional sta-
tistical element that is not contained in solutions of the stan-
dard transport equation as applied to shock acceleration.

o Elapsed time = 6.6 msec
10 T ' T [ T r T l T I T

10-11

Fraction of particles above
indicated energy

. * . 1 o, 1 ot

1072 .
0 15 30 45 60 75 90
61 (deg)
FiG. 9.—Fraction of particles from Fig. 7 with energy above the level indi-
cated vs. angle 6,. Only fractions above 10~ 2 level (> 20 particles) are shown.
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F1G. 10—(a) Ratio of the transformation velocity ¥}, to the injection veloc-
ity v, of 100 keV protons. The quantity Vy is the transformation velocity along
the mean upstream magnetic field from the upstream plasma frame to the
frame where the electric field vanishes on both sides of the shock. The right-
hand axis shows the ratio of the associated energies. (b)) Maximum change in
pitch angle required for particles with the indicated velocities to reencounter
the shock after escaping upstream (left) or downstream (right) beamed along
the mean magnetic field.

b) Peak Energy Gain at a Parallel Shock

Diffusive shock acceleration theory provides an estimate of
the maximum energy attainable after a finite acceleration time
at a parallel shock. If Ap and At are, respectively, the mean
momentum change and mean time taken per cycle (one cycle
involves diffusion from upstream to downstream and back
again), then the rate of change of momentum due to first-order
Fermi process is (e.g., Legage and Cesarsky 1983; Drury 1983)

él_’ ~ ____[i_ )
A 3y /Uy + 15,/U) P

where k, and x, are the upstream and downstream spatial
diffusion coefficients parallel to the mean field, respectively.
For a wave field consisting of a spectrum of circularly pol-
arized Alfvén waves with wave vectors parallel and anti-
parallel to the mean field B,, the pitch angle diffusion
coefficient obtained from quasi-linear theory (e.g., Jokipii 1971;
Wentzel 1974) is given by

kP(k)

D,, = ,
Bj

T
I Z (1 - “2)90

@

where u = cos « (« is the pitch angle measured relative to By),
P(k) is the wavenumber power spectrum (e.g., eq. [C1]), and
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Qo = qBy/(mc) is the gyrofrequency. Equation (4) is to be
evaluated at k = Qu(v|u|)~?, corresponding to the condition
for resonant pitch angle scattering. The parallel diffusion coef-
ficient is given by (Earl 1974)

2 L1 _ 22
K=Ljﬁ_liﬂ. )
4 Y Duu

For particle energies where power for resonant scattering lies
at wavenumbers for which kz, > 1 (i.e., nonrelativistic proton
energies in Fig. 2), the spectrum given by equation (C1) reduces
to

P(k) = Az (0B)*(kz,)~* (6)

where A = 26 sin (n/8) and 6B = (%)*/? is the rms value of the
wave field. Using equations (4) and (6) in equation (5) and
setting 6 = 5/3 and z, = 10° cm, one obtains, for protons,

K(p) = K(po)p/Po)*" , (7
where

k(py) = 2.4 x 10'%(6B/By) > cm?*s™ !, (8)

and p, = mv, is the momentum at the injection energy E, =
100 keV. Setting U, = U,/r, x, =f 'k, (note that By, =
By, = B, for 6, = 0°) and letting Ap/At— dp/dt, equation (3)
integrates to (for nonrelativistic energies)

(E/Eo)max = (1 + Vt)3/2 > (9)
where
4r—1 U2

Y= o ) Tape) (10

From Table 1, U; = 3.3 x 10® cm s~! and r = 3.85. Using
(6B/By)? = 0.2 and (6B/By)2 = 0.4 (f=2), v~ 10® s~ ' For
t=6.6x 1073 s, vt = 6.6, and, from equation (9), (E/Eq)max =
21, which is consistent with results for 6, = 0° in Figure 7. This
close correspondence between the simulation results and pre-
dictions based upon application of both quasi-linear theory
and diffusive shock acceleration theory is rather good, despite
the turbulence level and injection energy used in the simula-
tion. Specifically, the turbulence level is relatively high (ie.,
6B =~ B,), in which case diffusion coefficients derived using
quasi-linear theory are suspect. Also injection energies are rela-
tively small (i.e, U,/v, = 1), in which case diffusive shock
acceleration theory is not strictly applicable, since terms of
order (U,/v)? are neglected when matching upstream and
downstream solutions at the shock. This latter point may
explain why the spectrum for 6, = 0° (and other angles as well)
folds over at lower energies, and assumes a monotonically
decreasing form only when E/E, 2 5 (i.e., when [U/v]* < 0.1
and diffuse acceleration theory is applicable). In any case, the
agreement between the predicted and simulated values of
(E/E)max for a parallel shock is evidence that simulated energy
spectrum is evolving with time as expected from theory.

Inversion of equation (9) yields an estimate of time required
to reach a nonrelativistic energy (E/Eg),.x > 1 at a parallel
shock; that is, vt= (E/Ey)?3. Using (E/Eq)max =~ 10°
(corresponding to the maximum energy reached within
6.6 x 1073 s at 8, =75° in Fig. 7), vt & 10 or t = 107! s,
which, although ~ 15 times longer than the simulation run, is
still well within 1 s.
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To estimate expected scattering length scales we note that
since k = Av/3, the upstream parallel mean free path 4, is,
using equations (7) and (8),

A1(p) = A1 (po)p/P0)'" (11)

where
A1(py) = 1.6 x 10*(6B/B,y); 2 cm . (12)

In units of the injection gyroradius py; = 915 cm, equation (11)
can be written in terms of kinetic energy as

A1(E)/poy ~ 18(6B/Bo); (E/Eo)''° (13)

revealing a weak dependence on energy. For (6B/B,)? = 0.2,
A(Eg)/por =90, and A,(100E,)/po; = 200. Scattering scale
lengths on the order of these estimates are consistent with
those typically seen upstream in trajectory plots such as
Figures 5 and 6.

¢) Energy Spectra

We now compare the simulated energy spectra (Fig. 8) with
those derived from existing theoretical models. Two aspects of
the spectra in Figure 8 stand out. First, as emphasized earlier,
after a fixed acceleration time cutoff (5007,,), the upper energy
attained increases with increasing 6,. Second, beyond an
energy that increases slightly with 0, (ie., E/E, = 5 and =10
for 6; = 0° and 75°), each spectrum decreases monotonically
with energy, with the narrow, exponential-like spectra evolving
to broader, power law-like spectra as 0, increases. It is reason-
able to conclude that in the quasi-parallel regime, the increase
of spectral slope with energy is simply a consequence of the
relatively short cutoff time. If this is indeed the case, and if one
extrapolates the quasi-parallel spectra at lower energies to
higher energies, then, at least within a limited energy range (i.e.,
E/E, ~ 10-100), all the spectra show remarkably similar forms
(except the 0° spectrum, which has not evolved sufficiently and
is therefore too narrow). This similarity suggests that above a
certain energy, the steady state spectrum is independent of how
the relative contributions from the first-order Fermi and shock
drift acceleration processes depend on 6,. Rather, it is the
common element of spatial diffusion and the resultant sta-
tistical distribution in the number of shock encounters that
determine the spectrum. This is consistent with predictions
from diffusive shock acceleration theory.

The effects of drift acceleration at oblique shocks have been
incorporated into the diffusive shock acceleration formalism
(e.g., Toptyghin 1980; Jokipii 1982; Drury 1983). The most
revealing approach is that of Jokipii (1982), who explicitly
retained gradient and curvature drifts in the transport equa-
tion. For the simple case of a planar shock with geometry
shown in Figure 1, Jokipii (1982) obtained a steady state
energy spectrum (in the shock frame) of the form

14

% oc [E(E + 2mo )] "6[Y — Yo — n(E — Ep)]  (14)

for a source continuously injected at X =0, Y = Y, with
energy E,, where

_ r+2
T 2r—1)

(15)
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is the spectral slope, r = Uy,/Uy, is the compression ratio, and

— C(Bm/B% - Bzz/Bg)
q(Ux; — Uxa)

L (&r — 1)(r sin® 6)[(&r + 1) sin? 6, — 1]
(r — D[cos? 0, + (&r)? sin? 0,]

= (qu)_lF(r9 01) s

where €, = Uy B;,/c = Uy, Bz,/c is the mean electric field
magnitude (in the shock frame), By, = By, Bz, = {rBy,, and
&= (M3, — cos? 0,)/(M?%, — r cos® §,) have been used (note
that Jokipii 1982 assumes ¢ = 1, which is valid when M%,; >
r cos? 0,). For the nonrelativistic energies appropriate here,
equation (14) becomes

4(E)
dE

= (gey)”

(16)

o« ETTS[Y — Yy —n(E — Eo)], E<myc®. (17)
The important results are that the spectral exponent is inde-
pendent of 6, and a given energy E is associated with a unique
Y through the J-function. As emphasized by Jokipii (1982),
drift can limit the maximum energy gain if the shock is limited
in the Y or “ updrift ” direction.

The spectral exponent I" is given for each 6, in Table 1. The
variation in r with 0, results from the relatively small Alfvén
Mach number (M, = 3) and plasma beta (8, = 0.14) used. At
larger M,,, r, and therefore I, are relatively insensitive to 6,.
For 6, < 45° there are too few points to allow a reliable
extrapolation of I' to higher energies. For 6, > 45°, fits to
the spectra in Figure 8 over the limited energy ranges where
I' is nearly constant yield I'(45°) = 1.35(8 < E/E, < 50),
I'(60°) = 1.68(13 < E/E; $130), and I(75°)=186 (135
E/E, < 130). The corresponding theoretical estimates are 1.25,
1.32, and 1.36. The simulated spectra are consistently steeper
than the theoretical values (percentage differences are 8%,
27%, and 37% for 45°, 60°, and 75°, respectively), although,
considering the differences between the two approaches as well
as errors involved in estimating a steady state I" for the spectra
in Figure 8, the agreement is rather good.

One reason why the simulated I' may be larger than theory
predicts is that, at least for 45° and 60°, the spectra are really
still evolving for E/E, 2 10 (Fig. 7); however, at 75°, where the
simulated spectrum is essentially steady state and one would
expect the best agreement between theory and simulation, the
agreement is actually the worst. Perhaps of more significance
are the facts that diffusive theory cannot include statistical
fluctuations in 6,, and more importantly, diffusive theory
assumes that particle distributions remain isotropic right up to
the shock. This latter assumption probably breaks down at
75°, where energy gains come predominantly from drift, and,
therefore, anisotropies near the shock are expected to be large.
These points, however, are beyond the scope of the present
paper and are subjects for further work. However, based upon
estimates derived by extrapolating the simulated energy
spectra, we conclude that the simulations predict spectra that
are in reasonable agreement with solutions from steady state
diffusion theory. We emphasize that in the time-dependent
regime the simulations predict that as 6, increases, the spectra
form with increasing rapidity. More quantitative comparisons
can be made when time-dependent solutions to the diffusion
equation including drifts are available.

v
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The d-function in equation (14) gives, as a function of 8,, the
relative energy gained through the drift (AEp) and first-order
Fermi (AEp) processes. Since AE = E — Eq = AE,, + AE; is
the total energy gain, AE, = ge;AY, and A Y=Y - Y, =
nAE, then

AE,/AE = F(r, 6,) . (18)

Using the results in Table 1 to evaluate F, we obtain for
AE/AE(6,): 0 (0°), —0.08 (15°), 0.06 (30°), 0.34 (45°), 0.66 (60°),
and 091 (75°). (The negative values result when sin 6, <
[ér + 117 Y2 in eq. (16), indicating angles where curvature drift,
which drives particles antiparallel to €, exceeds the gradient
drift, which drives particles parallel to ey; Jokipii 1982). The
remarkable feature implied by the solution in equation (14) is
that T is independent of 6, even though the contribution from
the drift acceleration varies from 0% at 0° to over 90% at 75°.
The simulations are consistent with these predictions, at least
in a qualitative sense. More quantitative comparisons will be
necessary to verify equation (18), particularly at intermediate
01¢

d) Implications for Prompt Acceleration of Protons during
Solar Flares

In situations where severe time constraints are absent and
energy loss processes are negligible, questions concerning the
acceleration rate may be of secondary importance. However,
during solar flares, which are inherently dynamic processes,
observations (e.g., of X-ray and gamma-ray emissions) provide
time constraints that must be met by acceleration models. The
simulation results discussed earlier showed prompt ion acceler-
ation to 50 MeV or more can occur within a small fraction of a
second. Here we consider the effects upon ion acceleration of
Coulomb collisional losses and shocks which, although rapidly
formed, are relatively short-lived.

Collisional losses can play an important role during particle
acceleration in solar flares. Since the rate at which particles
lose energy in a fully ionized plasma depends upon the particle
energy as well as the density and temperature of the ambient
plasma, the criterion that the acceleration rate exceed the col-
lisional loss rate places severe constraints on the location of the
acceleration site in the solar corona. The implications of this
point were discussed by Achterberg and Norman (1980) in
relation to diffuse acceleration at parallel shocks. The well-
known expressions for the energy loss of protons due to
Coulomb collisions in a fully ionized plasma (e.g., Trubnikov
1965; Achterberg and Norman 1980) can be written as

<d_E> 3 {—-E/rpe Enw<E<E,
dt)c  |4/3J™E/JE,) **E/r,) E>E,

where

> (19)

3 1/2 l/2k T 3/2
tpe=(20,)" = (ﬂﬂ> mp & TS )

8/2m \m, Apeetn,

where v, is the proton-electron collision frequency,

3 3\ 1/2
e (55) ]
2e° \ mn,

is the Coulomb logarithm, E, =3kzT,/2, and E, =
(m,/m,)E,,. Coulomb loss rates increase linearly with proton
energy E < E,,, maximize at E = E,,, and then decrease as
E~ Y% for E > E,,. Collisional losses can be safely neglected if
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F1G. 11.—Coulomb loss time (eq. [20]) for protons in a fully ionized
electron-proton plasma vs. electron density. Each curve corresponds to a dif-
ferent electron temperature T,. The quantity E, = (m,/m)3kg T,/2) is the
proton energy at a velocity equal to the electron thermal velocity.

the bulk of the protons are accelerated from E = E, > E,; to
E > E, inatime T, < t,,. The e-folding loss time 7, is plotted
in Figure 11 versus electron density n, for different electron
temperatures T,. The values n, = 10'° cm 2 and T, = 10’ K
assumed for the simulation yields E,, = 1.6 MeV and 7,, = 36
s; thus, our neglect of collisional losses for all 8, was justified
(e.g., Fig. 7). (Note that relative to the plasma upstream, that
downstream of the shock is both compressed [n,, > n,,.] and
heated [T}, > T;.], so 7, is generally different on either side of
the shock).

Using Figures 7 and 11, we can estimate the maximum n,
(for T, = 107 K) for each 0,. An extrapolation of the results for
0, = 0° in Figure 7 indicates that the bulk of the particle popu-
lation will exceed ~1.5MeV beyond T, = 3000t,, ~4
x 1072 s, which implies that losses at 0° are negligible (i.e.,
T,/t,. < 0.1) as long as n, < 10'* cm™3. For 6, = 75°, T, <
807,, ~ 10~ 3 s, which implies that losses are negligible in this
case as long as n, < 10'°-10'* cm'?; for the superfast com-
ponent, T, <87y, ~ 107 *s, which implies n, < 10'4-10!°
cm 3. Thus, acceleration can proceed at electron densities
~ 100 or more times larger when the shock is nearly perpen-
dicular than when it is parallel. Therefore, when the shock is
quasi-perpendicular, proton acceleration can take place lower
in the solar atmosphere, where the energetic protons are closer
to the target material with which they collide and generate,
among other things, the characteristic neutral radiation
(gamma rays and neutrons). Of course, the above estimates
assume T, is constant, which is not the case on the Sun, where
T, generally decreases as n, increases with increasing depth in
the solar atmosphere. For example, when T, < 4.2 x 10° K,
E,, < 100 keV, and collisional losses for injection at 100 keV
are less severe for any 6,. Also, since the acceleration rate scales
as (6B/B,)? for a given 0,, a decrease in this quantity by a
factor of 100 yields a corresponding decrease in the maximum
n, estimated above.

Finally, we note that based upon GRS data, Chupp (1984)
posed the question: “Is it possible to find a single, primary,
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repetitive acceleration mechanism operative in a flare, or will
only a fast, cyclic, multistage process meet observational con-
straints for both electrons and ions?” The work reported by
Papadopoulos et al. (1985) on the formation time (~ few
microseconds) of oblique shocks and the results shown in the
present paper suggest that the combined stages of shock for-
mation and proton acceleration from 100 keV to greater than
50 MeV can occur within a time interval as short as 10 ms. If
several such shocks, separated in time by several seconds, were
to form and decay within ~ 1 s, then as far as existing experi-
ments are concerned, the accelerator would appear as a single
repetitive mechanism. This scenario is a possible explanation
for multiple events produced in the GRS data during solar
flares, with the onset of each event being nearly simultaneous
(to within less than 1 s) over the range of photon energies from
40 keV to ~50 MeV (Chupp 1984).

V. SUMMARY AND CONCLUSIONS

In this paper we have addressed the problem of charged
particle acceleration at oblique, fast-mode, collisionless MHD
shock waves. Our specific goal was to study how the acceler-
ation rate depends upon the angle 6; between the shock
normal and mean upstream magnetic field when magnetic
irregularities exist on either side of the shock. To treat the
general situation where 6,, the level of magneitc turbulence
(6B/B,), the shock strength (or compression ratio) r, and the
energy of injected particles can assume a range of values, we
have performed test particle simulations. The particle code,
which is fully relativistic in particle energy, integrates the par-
ticle equation of motion to obtain particle phase-space orbits
in a system that consists of the shock plus magnetostatic turbu-
lence (in the plasma rest frame) upstream and downstream of
the shock. Particles are accelerated through a combination of
the shock drift process, which dominates at quasi-
perpendicular (45° < 60, < 90°) shocks, and the first-order
Fermi process, which dominates at quasi-parallel (0° < 0, <
45°) shocks.

The advantages of this straightforward (but time-
consuming) approach over that which involves solving the
cosmic-ray transport equation (including drifts) across the
shock are as follows: (1) particles can be injected at velocities v,
for which U, sec 6,/v, = 1 (U; = shock speed), in which case
the large energy gains and anisotropies produced by drift
acceleration violate the diffusion approximation in the shock
vicinity; (2) the gyrophase and pitch angle dependence of the
drift process is properly handled; (3) large-amplitude fluctua-
tions (0B = B,) are easily incorporated, and the resulting non-
linear wave-particle interactions are properly treated; (4) the
time-dependent development of particle distributions (e.g.,
energy spectra) can be studied as a function of the important
parameters (i.e., U, sec 8,/vy, r, 6B/By). The details of the
model were described in § IT and the appendices.

As an illustrative application of the numerical code, we
studied the case of proton acceleration at shocks in the lower
solar corona to simulate prompt ion acceleration during solar
flares. For reasonable numerical values of the relevant physical
parameters (Table 1), we injected an ensemble of 100 keV
protons at the shock and examined the resultant distribution
(~2100 particles) after 500 gyroperiods (6.6 ms in a 50 G up-
stream magnetic field). Only 6, was varied for each run. The
numerical results were described in § III, and specific aspects of
these results were discussed in detail in § IV. Notable results
are summarized below.

1. For 8, = 75°, ~1% of the protons were accelerated to
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energies greater than 50 MeV in fewer than 7 ms, which is a
period well below the resolution of relevant instruments (e.g.,
2 s for the GRS on SMM).

2. The percentage of protons accelerated beyond 10 MeV
within 7 ms increase with increasing 60,, from 0% at 0°, to a
maximum of 9% at 60°.

3. In the quasi-perpendicular regime, a separate population
extending from 100 keV to ~10 MeV was produced in a
superfast phase lasting only ~ 10 gyroperiods (~ 100 us).

4. The peak energy attained at the parallel shock (~2-
3 MeV within 7 ms) agreed well with that expected from diffu-
sive shock acceleration theory.

5. At 0, =75° the simulated energy spectrum below
10 MeV did not evolve further beyond 7 ms. Between 1 and
10 MeV, the slope of the simulated spectrum is 1.9, while that
expected from steady state diffusion theory is 1.4. We suggest
that this discrepancy (35%) may be attributable to the break-
down near the shock of the quasi-isotropic assumption implicit
in the theory. Further simulation work along this line is clearly
necessary.

6. The increase in acceleration rate as 0, increases implies
that, when Coulomb collisional losses are considered, acceler-
ation can proceed at electron densities ~ 100 times larger when
the shock is nearly perpendicular than when it is parallel. This
implies that acceleration at quasi-perpendicular shocks can
occur lower in the solar atmosphere, when the energetic
protons are closer to target material with which the protons
collide and generate, among other things, gamma-ray and
neutron emission.

7. The combined stages of shock formation and proton
acceleration to >50 MeV can occur within a time interval as
short as 10 ms at quasi-perpendicular shocks. If several such
shocks, separated in time by several seconds, were to form and
decay within ~ 1 s, then as far as existing instruments are con-
cerned, the accelerator would appear as a single repetitive
mechanism.

Note that if the variance of the magnetic field fluctuations
were reduced by a factor as large as 100, so that upstream
(6B1/By1)* = 0.2 would go to 0.002, acceleration rates would
be correspondingly decreased. Thus, the spectrum at 6; = 75°
would be formed within 0.7 s, still well within observational
constraints. Also, when the escape boundaries are set closer to
the shock, or the amplitude of the random field is damped
away from the shock, or both, the energy spectra in the quasi-
perpendicular regime in Figure 7 would depart from power-
law forms and would exhibit more exponential-like forms, with
spectral slopes increasing with increasing energy.

We conclude that the exact orbit, test-particle simulations
can provide important insight into the process of time-
dependent acceleration at turbulent, oblique shocks, and can
reveal microstructure (e.g., the superfast acceleration phase in
the quasi-perpendicular range) not accessible to diffusion
theory. By their nature, however, simulations of this sort are
limited, for practical reasons, to at most a few thousand gyro-
periods per particle. To obtain solutions at longer times, or in
the limit, in the steady state, Monte Carlo simulations or use of
the cosmic-ray transport equation are clearly the most practi-
cal approaches, provided the physical effects implied by the
simulations are incorporated in some manner.

This work was supported in part by the JHU/APL Indepen-
dent Research Development Program under US Navy con-
tract N00024-83-C-5301, in part by NSF grant ATM 83-05537,
and in part by NASA grant NSG-7055.
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APPENDIX A
DETAILS OF THE INTEGRATION SCHEME

Here we summarize the relations used to transform among the frames K, K ,, and K and discuss the numerical procedure used to
integrate equations (1) and (2). We allow particle motion to be relativistic but restrict the relative velocities among the reference
frames to be nonrelativistic. Relative to frame K, the system K; (i = 1-2) moves at velocity

U, = (U, cos 9,0, U; sin §)) , (A1)
and the axis z; of K, lies among the unperturbed field
B,; = (By; cos 0;, 0, By, sin 0)) (A2)

(see Fig. 1). Particle orbits are obtained by integrating equations (1) and (2) of § Il in frame K. At injection (¢t = 0) for each particle,
the origins of the three frames coincide. Let [x(t), p{t)] be a particle’s phase point relative to K; in (x, p) space at time ¢, where
x; = (X Yi» 2, Pi = (Dix> Diy» p:,)- Then, given [x,(t), py()]in Ky, [x4(2), p,(t) relative to K, is given by

x,(t) = Rx,(t) + Ayt , (A3a)
and
P2(t) = Rpy(t) + 7,4, , (A3b)
where y; = [1 + (p;/mo ¢)*]*/* and R is a rotation matrix given by
cosA 0 sin A
R=]| 0 1 0 , (A4)
—sinA 0 cos A

where A = 6, — 6,, and A, is the constant vector
U, sin (6, — 8,) — U, sin (0, — §,)
A = 0 . (AS)
U, cos (8, —d,) — U, cos (8, — 8,)
The inverse transformation from K, to K is
x,(t) = RTxy(t) — A, (Aba)
and
p:1(1) = R7py(t) — y, 4, , (A6b)
where RT is the transpose of R, and 4, = RT A4, is the constant vector
U, sin (6, — 8,) — U, sin (8, — 9,)
0 . (A7)
U, cos (6, —8,) — U, cos (6; — 65)

4, =

The transformation from K; to K is
Xt)=S;xt)+ U;t, (A8a)
and
P(t) = S;p(t) +7: U;, (A8b)

sinf; 0 cos 0,
Si = 0 1 0 N

—cos §; 0 sin 6,

where

and X = (X, Y, Z), P = (Py, Py, P;). To obtain the above relations terms of order (U,/c)* were neglected.

Equations (1) and (2) of § IT were solved for each particle for given realizations of b(z) (see Appendix B) in the upstream and
downstream regions using the following algorithm. At t = 0 a particle is injected at [x{(0), p{0)] in frame K;. The particle is
integrated along its orbit using Hamming’s modified predictor-corrector scheme (e.g., Carnahan, Luther, and Wilkes 1969) with an
initial time step h{® = 10~ %z,; (Where to; = 271/Qq;, Qo; = qBoi/m, ¢) and an upper truncation error bound ¢,. Values used for typical
runs were a = 2, €, = 10~%. The integration scheme automatically halves h{”’ up to 10 times until local truncation errors are less
than ¢,. Shock crossings are detected by testing the equation

X(t) = x{¢t) sin 6; + z{(t) cos 6; + U;t cos §; (A10)

at each time step for a sign change. For example, suppose that during the interval h{® between times t; and ¢§9, = t; + h{® the
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particle makes its kth shock crossing, say from upstream to downstream so that i = 1 in equation (A10). Then X(z;) < 0, while
X(#Q,) > 0. If t;,, denotes the actual crossing time (t; < t,, < t%,), then successively more accurate estimates of #,, are obtamed by
halving h‘o) restarting the integration at ¢;, and iterating n times until a criterion ¢}, — t; = h{” < ¢, is satisfied, at which point we
set t;, =t ,. For a typical value of €, = 107>, n = 3-5. At this point, [x,(t), p,(tkc)] and ty are used in equatlon (A3) to obtain
[x,(tk.), pz(t,w)] which provide the new initial condmons for orbit integration in K,. Tracing a particle orbit in the wave-shock
system actually consists of several initial value calculations using, equations (1) and (2), with the initial conditions for each
integration obtained from the transformations (A3) and (A6).
Particles are permitted to escape the wave-shock system by passing through predefined escape boundaries at

X¢ = A;|cos 6] i=1lor2, (Al1)
for a given escape length A > 0 along the mean magnetic field. Escape upstream occurs when X < —X§ < 0, and escape down-
stream occurs when X > X§ > 0.

APPENDIX B
GENERATION OF RANDOM FIELD REALIZATIONS

Here we give the details of how spatial realizations of the random field b(z) = £b,(z) + b (z) are generated for use in the
simulation. Let {b(z)} be a zero-mean, homogeneous random process, such that {b(z)} denotes the ensemble of real-valued functions
b(z) [where b(z) = b(z) or b(z)] of the spatial variable z, — o <z < co. Let b(z) be a particular sample record or realization of {b(z)}
that consists of N points evenly spaced a distance h, apart on the finite interval [0, L]. Let

N =2°, (B1)
where p is a positive integer >0, and define
b,=b(z =z, =nhy), 0<n<N-1, (B2)
as the value of b(z) at each of the N discrete points. Then the grid spacing is
h,=L/N —1)=L/N, (B3)

where L = L + h,. For convenience in applying periodic boundary conditions to the realization along z, we define the additional
point by = b, in equation (B2), so that there are now N + 1 points on [0, L]. We relate h, to the correlation length z, of the random
field by

hy = z./2%, (B4)
where q is a postive integer, 0 < g < p. Given p, ¢, and z, the length L is given by
[ =Nh,=2""1,. (BS)

so that there are 2% > 1 correlation lengths per interval L, with 27 grid points per z.. [In rough terms, two values of b(z) separated
by z = z, will, on average, be completely different in magnitude, direction, or both].

The technique of synthesizing a realization of b(z) is most easily understood by first considering how one would obtain the finite
Fourier transform of the N points of b(z) on the interval [0, L]. We follow here the discussion of Owens (1978). One has

= Ni: b,e *r=  m=0,1,2..,N—1, (B6)
where
k,, = 2nm/(Nhy) = 2nm/L (B7)
is the wavenumber corresponding to wavelength A, = L/m and is associated with the Fourier coefficient a,,. The inverse transform is
1 N-1

b,,—ﬁmzoa etmem - n=1,2,3...,N—1. (BB)

For real b,, only half of the a,, are unique, with
Ay = ak , m=1213,...,N2—-1, (B9)

where the asterisk (¥) denotes complex conjugate, a, and ay, are real, and a, = 0, so that b(z) has zero mean. The largest (Nyquist)
wavenumber (i.e., smallest wavelength) definable for grid spacing A, is

ky = kyj2 = n/h, = n2¥/z, (B10)
while the smallest wavenumber (i.e., largest wavelength) is
kg =k, =2n/L =2"?%k, . (B11)

Thus, ky/ks = 277 1.
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An estimate of the one-sided (i.e., 0 < k < o0) wavenumber power spectrum P(k) at k,, is (Bendat and Piersol 1971)

2h
P,= (ﬁ) la,|* . (B12)

Only the modulus | a,, | of each a,, is recoverable from equation (B12). Thus, the a,, are not uniquely defined for use in equation (BS).
Following Owens’s (1978) suggestion, we generate the phase angles ¢, randomly from a distribution uniform over the interval
(0, 2m) and use | a,,| = (NP,,/2h,)'/* = N(P,,/2L)*? to obtain

a, = |a,| ¥ = N(P,/2L)" 2! . (B13)

Upon taking the complex conjugate of equations (B8) and (B13), and requiring the b, to be real, one obtains

N-1 X
=Y A,e ki (B14)
n=0
where
= (P,/2L)! 2! . (B15)

Note equation (B14) is in exactly the same form as equation (B6). Thus, fast Fourier transform (FFT) techniques routinely used to
Fourier analyze real input data b, by generating the a,, via equation (B6) can also be used to synthesize a particular realization of the
b, from the coefficients A4,, in equation (B15) once P, and the random ¢,, are given. The A4, also satisfy

Ay-m=4n, m=123..,N2-1, (B16)

where again we set 4, = 0. Thus, each set of random ¢,,, m =1, 2, 3, ..., N/2 — 1, generates one particular realization of b, on
[o, L].

As pointed out by Owens (1978), it is possible to generate two field realizations with one use of the FFT on equation (B14) by
defining 4,, by

A, = (P,20)" (e + ei*) (B17)

and using 4,, in equation (B14) to generate the N element complex vector b,, such that Re (b,) and Im (b,) each constitute a
realization of b(z). When ¢,, and ¢,, are independent random phases, the two resultant realizations are statistically independent of
each other. The form (B17) also allows one to conveniently generate the x and y components of the random field b(z) = Xb,(z)
+ Pb,(z) by specifying the polarization of each Fourier component. If we set ¢, = ¢, + s, 7/2(s,, = +1 or —1), P,,— P, /2, then

b.(z) = Re (b,) and b W(2) = Im (b,) are the components of the two-dimensional random ﬁeld b(z) formed by superposing circularly
polarized Fourier components. When s,, = + 1(—1), the (nonpropagatmg) mth plane wave component would appear to have
positive (negative) helicity to an observer moving along the z-axis toward positive or negative z in the plasma frame. The sign s,, can
be predefined for all m or randomly generated for each m.

It remains to discuss how the synthesized random field b(z) [b,(z) or b (2)] is used in equation (1) of § II. Once generated using the
FFT, the N + 1 discrete values b, of b(z) (i.e., the N values b,, n =0, 1 2,. -1, plus the value by = b,) reside in the N + 1
element vector {F(j)}, j=1,2,3,..., N + 1. For convenience, we translate the origin via z— z — L,/2 so that the center of the
realization lies at the origin of frames K, or K,, and label ﬁeld points by the index I = n — N/2, so that now z; = lh,, | = —N/2,
(—-N+1)/2,..., —1,0,1,...,(N — 1)/2, N/2. Then, b(z) = b, = F(j = | + 1 + N/2). A given point z = ¢ will generally not coincide
with a field pomt and ¢ may also lie outside the interval [ — L/2 /2] containing the field points b,. In the former case, we use linear
interpolation between field points, and in the latter case we impose periodic boundary conditions along z as follows. For & within
(— o0, o) but ¢ outside [ —L/2, L/2] we calculate the appropriate index [ for ¢ using [ = INT[z/h, + N/2] — N/2, where z = ¢

— INT[¢/L + SGN(£)0.5] now lies in the interval [ — /2, L/2] (where INT = integer, SGN = sign). Index [ labels the field point
F(j),j = I + 1 + N/2, that is the nearest field point to the left of z, and linear interpolation is used to find b(¢) via

b(§) = b(2) = F(j) + [F( + 1) — F()ILz/hy — 1] - (B18)

This equatlon provides the field point b,(z), b,(z), or both at each point along a particle’s orbit.

It is of interest to model the case where the amplitude of the transverse MHD wave field decreases with increasing distance from
the shock, so that scattering is more efficient closer to the shock. Such is the case, for example, upstream of the Earth’s bow shock
(e.g., Hoppe et al. 1971) and some interplanetary shocks (Tsurutani, Smith, and Jones 1983), where the field of MHD waves is
apparently generated by low-energy ions streaming away from the shock. Such waves are ultimately convected back to and through
the shock by the super-Alfvénic upstream bulk flow. We include the possibility for spatial dependence of wave amplitudes by the
following simple model. First, we assume that in the first approximation the MHD waves are nonpropagating in the plasma frame.
Let D be the distance from the shock along B, over which the amplitude of the wave field decreases to, say, one-half its value at the
shock, and assume D > z, so that the random wave field remains at least quasi-homogeneous. Given the particle’s position x(t) in
plasma frame K;, we obtain its coordinate X = X(x;, z;, t) in shock frame K using equation (A10), and let b(z;) — ['(X)b{z;), where
I'(X)is a “damping ” function. We have assumed the simple form

LX) =[1+1X/X7", (B19)
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where
X? = D;|cos 0] (i=1lor2, (B20)
so that T(X?%) = '(0)/2.

APPENDIX C
POWER SPECTRUM

We obtain the amplitudes of the Fourier coefficients in equations (B15) or (B17) by assuming a one-sided (0 < k < c0) wavenum-
ber power spectral density P(k) of the general form
26 sin (n/5)z,6?
Pk) = —————F5—,
k) 1+ (kz,)°

where z, is the correlation length of the random field and &2 is the variance. The power spectrum P(k) of the random field b(z) [b,(z)
or by(z)] is related to the autocorrelation function

l<d< o, (C1)

R(¢) = lim 1 Jbb(z)b(z + &dz (C2)
L— o L 0
by the Fourier cosine transform pair (e.g., Rice 1954)
Pk) =4 IwR(é) cos (k&)dé& , (C3)
0
and
R(¢) = L JwP(k) cos (k&)dk , (Cq)
21 Jo
then
1 L
R(0) = lim — J b(z)dz = y?, (Cs)
L- L 0.

where 2 is the mean square value of b(z). If b(z) is a random function of z with zero mean, then the variance 2 = 2, and by
equations (C4) and (C5),

J * Pdk = 27R(0) = 2152 , (C6)
0

which is satisfied by equation (C1). The form (C1) with 6 ~ 1-2 is characteristic of the spectra of Alfvénic fluctuation in the
interplanetary medium (Matthaeus and Goldstein 1982), and is suggested by Owens (1978) to be a reasonable form for synthesizing
magnetic field realizations for numerical studies of cosmic-ray transport (Owens considered the case § = 3/2). The special case § = 2
yields the familiar exponential autocorrelation function R(£) = R(0)e ~*'* used by Kaiser (1974) to generate magnetic fluctuations
to study energetic particle propagation in magnetostatic fluctuations. Brinca (1984) extended Owens’s (1978) method and generated
realizations of time-dependent electric and magnetic random fields using the form (C1) with 6 = 3/2-3 to study ion transport in the
Earth’s magnetosheath.

For given values of §, z,, and 62, equation (C1) is evaluated at each discrete k,, in equation (B7), and P,, = P(k,,) is substituted into
equation (B15) or (B17). Whereas the synthesized realization b(z) on [0, L] is composed of Fourier components with wavenumbers k
within [kg, k;] (eqs. [B10] and [B11]), the normalization (C2) assumes 0 < k < oo. Therefore the variance ¢ determined by a
statistical analysis of the N points b,,n =1, 2, 3, ..., N — 1, yields

1
ol == ; b2 < 2. (C7)

Normally, for 6 ~ 1-2 and kg < z; ! < k;, 6° exceeds o2 by less than 10%. However, o2 is the relevant physical quantity and is
therefore quoted in the text.
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