A&A 454, 957-967 (2006)
DOI: 10.1051/0004-6361:20064953
© ESO 2006

A8§tronomy
Astrophysics

Gyrokinetic electron acceleration in the force-free corona
with anomalous resistivity

K. Arzner! and L. Vlahos?

! Paul Scherrer Institut, 5232 Villigen, Switzerland
e-mail: arzner@astro.phys.ethz.ch

2 Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: vlahos@astro.auth.gr

Received 2 February 2006 / Accepted 27 March 2006
ABSTRACT

Aims. We numerically explore electron acceleration and coronal heating by dissipative electric fields.

Methods. Electrons are traced in linear force-free magnetic fields extrapolated from SOHO/MDI magnetograms, endowed with
anomalous resistivity (17) in localized dissipation regions where the magnetic twist V x b exceeds a given threshold. Associated
with 7 > 0 is a parallel electric field E = nj that can accelerate runaway electrons. In order to gain observational predictions, we inject
electrons inside the dissipation regions and follow them for several seconds in real time.

Results. Precipitating electrons that leave the simulation system at height z = 0 are associated with hard X rays, and electrons that
escape at height z ~ 3 x 10* km are associated with normal-drifting type IIIs at the local plasma frequency. A third, trapped population
is related to gyrosynchrotron emission. Time profiles and spectra of all three emissions are calculated, and their dependence on the
geometric model parameters and on 7 is explored. It is found that precipitation generally precedes escape by fractions of a second
and that the electrons perform many visits to the dissipation regions before leaving the simulation system. The electrons impacting
z = 0 reach higher energies than the escaping ones, and non-Maxwellian tails are observed at energies above the largest potential drop
across a single dissipation region. Impact maps at z = 0 show the tendency of the electrons to arrive at the borders of sunspots of one
polarity.

Conclusions. Although the magnetograms used here belong to non-flaring times, so that the simulations refer to nanoflares and

“quiescent” coronal heating, it is conjectured that the same process, on a larger scale, is responsible for solar flares.
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1. Introduction

Observations of radio waves and hard X-rays (HXR) from so-
lar flares allow the study of the acceleration and propagation of
high-energy electrons that are responsible for both types of emis-
sion. The picture emerging from the observations is generally
complicated (Benz et al. 2005). While HXR (bremsstrahlung)
emission is often associated with metric type-III radio groups
(Aschwanden et al. 1995), the timing of individual type III’s and
the HXR fine structure is erratic.

Metric type III’s are presumably caused by electron beams
exciting Langmuir waves, which then couple to electromagnetic
(observable) modes. Sometimes, there is perfect agreement be-
tween type III onsets and HXR maxima, but in other cases there
is no obvious peak-to-peak correlation, or one of the emissions
is absent altogether. As a trend, the type III’s onsets were found
to be delayed by fractions of a second against the HXR fine
structures (Aschwanden et al. 1992; Arzner & Benz 2005), al-
though the type III frequency drift may assist such delays in
cases where the type III onset could not be resolved properly.
At millimeter and decimeter wavelengths, synchrotron emission
(e.g., Giménez et al. 2005), decimetric radio continuum and
decimetric pulsations (Saint-Hilaire & Benz 2003), and deci-
metric spikes (Giidel et al. 1991) have also been found to be
associated with HXR, roughly in the above decreasing order of
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association probability. These types of decimetric and millimet-
ric radio emission are related to magnetically trapped electrons,
where loss-cone instabilities are believed to be responsible for
temporal structures (Kuijpers & Slottje 1976; Aschwanden &
Benz 1988; Fleishman & Melnikov 1998).

The variety of observed behaviour accounts, on the one hand,
for the non-linear (coherent) radio emission processes. On the
other hand, it reflects the geometric complexity of the active re-
gions, which results from the nonlinear dynamics in the convec-
tion zone. In fact, the complex behaviour and the complex geom-
etry are likely to be causes and effects of each other. Including a
realistic amount of geometric complexity in a numerical model
of solar flares was a major motivation for the present work.

Apart from the geometrical aspects, the modeling of solar
flares requires the specification of a physical acceleration mech-
anism. As a working hypothesis, we assume here that acceler-
ation is caused by DC parallel electric fields due to anomalous
resistivity. Such fields are capable of accelerating high-energy
electrons for which the electric force is no longer counterbal-
anced by the collisional drag (Dreicer 1960). It should be pointed
out that runaway acceleration applies only to a small fraction of
electrons in the high-energy tail of the electron distribution and
that the majority of electrons is (Joule) heated rather than ac-
celerated to superthermal energies. The electric fields envisaged
above are of a macroscopic and dissipative nature and mark the
irreversible release of non-potential magnetic energy. We thus
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follow a scenario proposed by Parker (1972, 1983, 1993) where
the random photospheric footpoint motion twists and shears the
coronal magnetic loops so as to develop tangential discontinu-
ities. This happens intermittently and in multiple localized re-
gions throughout the solar corona and does not generally im-
ply loop instability or global re-structuring of the solar corona.
Parker’s idea has initiated many investigations of coronal heat-
ing and eruptions (e.g., Schumacher & Kliem 1996; Torok &
Kliem 2001; Gudiksen & Nordlund 2002) and has significantly
improved the understanding of the global flaring process. In our
view, a strong but heuristic argument for adopting dissipative
(rather than conservative) electric fields as responsible for parti-
cle acceleration in solar flares is the intermittent and violent na-
ture of flares, hinting at a catastrophic process that could not be
cast in a Hamiltonian formalism. However, conservative electric
fields, as used in most investigations of stochastic acceleration
(e.g. Karimabadi et al. 1987; Schlickeiser 2003), may also act as
particle accelerators.

In the present study, we adopt a test particle approach simi-
lar to the simulations of Matthaeus & Lamkin (1986), Dmitruk
et al. (2003, 2004), Arzner & Vlahos (2004), and Arzner et al.
(2006), but with two important modifications. First, the electro-
magnetic force fields are not taken from MHD turbulence sim-
ulations or random-phase turbulence proxies, but from observed
magnetograms. Second, in order to span the many orders of mag-
nitude between the electron Larmor radius and the size of mag-
netic loops, we allow for gyrokinetic motion, keeping track of
the gyro phase in an approximate way. This technique enables
us to follow the electrons over several seconds in real time (sev-
eral 10® gyro times), thereby reaching the time scales on which
solar flares are observed. In the simulations, runaway electrons
are injected at ¢ = 0 inside the localized dissipation regions and
followed numerically along (and sometimes across) the mag-
netic field lines. Observational predictions for HXR and radio
waves are obtained as the electrons impinge the chromosphere,
get trapped, or escape to the higher corona.

The article is organized as follows. Section 2 describes
the construction of the coronal field, Sect. 3 the particle or-
bits, Sect. 4 the numerical results and observational predictions.
These are then summarised and discussed in Sect. 5.

2. Coronal electromagnetic fields

Our domain is a slab of height H, bounded at z = 0 by the pho-
tosphere and filled with time-independent force-free (e.g., Gary
1989) magnetic fields. We do not ask for a perfect field recon-
struction here, but for a generic configuration compatible with
the observation. Accordingly, we use an elementary linear force-
free extrapolation from the normal photospheric magnetic field.
This represents a local approximation at best (Wheatland 1999),
and we have a slab thickness H of not more than a few 10* km
in mind when fixing the physical scaling. (The linear force-free
assumption predicts loops flaring with height, in contrast to the
slender high-ranging loops observed by TRACE.) Further char-
acteristic length and time scales are compiled in Table 1.

2.1. Construction of the force-free magnetic field

The force-free condition requires that V X B = aB, where «
is assumed to be constant (“linear” force-free field). Our con-
struction of the force-free magnetic field follows the lines of
Alissandrakis (1981), with modifications concerning the selec-
tion and number of Fourier modes. In order to avoid large but
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Table 1. Notation and physical scaling.

Symbol Meaning Typical value
Q! particle time unit 107s
lo particle length unit 0.3m
/ magnetogram resolution 660 km
L magnetogram size 1.7 x 10° km
H slab height 3 x 10* km
1/a force-free scale 2 x 10* km
1/u, critical twist scale 3 x 10° km

passive 3-dimensional arrays, the strategy is to locally com-
pute B(x) from a restricted number of Fourier modes b(k) elfex,
In terms of these, the force-free condition becomes ik x b(k) =
ab(k). This equation has only a non-trivial solution if |k|> = a?,

which we write in the form

k.= ++Ja2— k2 where K=k, (1)

and if b(k) is proportional to
(—koke + iaky, —kyk. - iaks, &+ k7). 2)

See MacLeod (1995) for a fuller discussion of the curl eigen-
functions. We assume k, and k, to be real, so that the magnetic
field in the (x,y)-plane is bounded, while k, may be complex
with a positive imaginary part. Thus modes decaying or oscillat-
ing with height are permitted, and we use a small admixture of
oscillating modes to transport structures from the chromosphere
to greater heights. From a physics point of view this procedure
is justified by noticing that the outstreaming solar wind (in a
1-dimensional slab geometry) does not require B(z) to vanish
as z — oo. Furthermore, different wave vectors are not rational
multiples of each other, so that the magnetic field extends in a
non-periodic, generic way across the (x, y)-plane. This irregu-
lar spacing of the Fourier components also avoids aliasing arti-
facts, and their small number allows a non-expensive evaluation
of the magnetic field even if no fast Fourier transform is avail-
able. However, the restriction to just a few Fourier components
makes an exact matching of the boundary conditions impossible.
Instead, we require agreement only in a least square sense, and
minimize the mean-square deviation of the sparse-Fourier field
B.(x,y,0) and the photospheric boundary field B,o(x,y) in the
square L X L. Setting

B(x) = Re Z Crb(k)e*™, 3)
k

normalizing the eigenvectors such that |b,] = 1, and using
the (approximate) orthogonality of the harmonic functions over
L x L, the coefficients C(k) are given by

Clky ~ SO0t f dxdy bt (k)e kB o (x, y). (4)
Ne  Jixe )

The boundary field B,y(x,y) is given on a square lattice
(cell size %), and the integral (4) is computed numerically.
“Complementary” solutions of the homogeneous boundary
value problem (Chiu & Hilton 1977; Petrie & Lothian 2003)
are disregarded. The sparse-Fourier wave vectors (k,, k) are se-
lected by the following procedure. First, the fast Fourier trans-
form of the discrete boundary field is computed and those
Ny (regularly spaced) wave vectors are chosen that have the
highest power spectral density. Then, a random perturbation
(Aky, Ak,) < m/lis added to break the exact periodicity. The
eigenvectors (Eq. (2)) automatically ensure that V - B = 0.



K. Arzner and L. Vlahos: Gyrokinetic electron acceleration

BZO(X’Y)

120 250
100 200
& _ 150
X 60 N
100
40
20 50
0 0
0 20 40 60 80 100120 0 50 100 150 200 250
x/I x/|
B,(x,y,0) B,(x,y,0)
120 250
100 200
& _ 150
> 60 >
100
40
20 50
0 0
0 20 40 60 80 100120 0 50 100 150 200 250
x/1 x/1

Fig. 1. Boundary fields (fop) and their sparse-Fourier representations
(bottom) of a bipolar configuration (left) and a SOHO/MDI magne-
togram (right) recorded on August 17, 2002, 10:40 UT. The lower left
corner of the magnetogram corresponds to (78”,—-36") in heliocentric
coordinates, and the scale is [ = 0.94".
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Fig. 2. Power spectral density (grayscale) of the boundary fields of
Fig. 1 (top). Left: bipolar configuration; right: SOHO/MDI magne-
togram. The sparse-Fourier components are marked by dots.

A test case with two Gaussian footpoints of opposite po-
larity is shown in Fig. 1 (left column), with the true bound-
ary field B,o(x, y) presented in the top left panel and its sparse-
Fourier version B,(x,y,0) presented in the bottom left panel.
The sparse-Fourier version only contains NV, = 100 components.
This low number already provides a good approximation (cor-
relation coefficient 0.94), because the Fourier spectrum (Fig. 2
left) is concentrated at the origin. When real data are used, a
larger number of Fourier components is needed. This is illus-
trated in Fig. 1 (right column), showing a SOHO/MDI magne-
togram (top right) and its sparse-Fourier representation (bottom
right) using 5000 Fourier components (Fig. 2 right). The mag-
netogram is located close to the centre of the solar disc, so that
projection effects are negligible. The magnetogram resolution is
[ = 660 km (rescaled from the original SOHO/MDI resolution),
and the correlation coefficient between the magnetogram and its
sparse-Fourier representation is 0.93. The magnetogram belongs
to a non-flaring configuration and therefore the force-free ex-
trapolation should be a reasonable approximation. Although the
smallest scales are not well represented by the sparse-Fourier ap-
proximation, they rapidly decay with height (Eq. (1)), so that the
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Fig. 3. Sparse-Fourier force-free magnetic field lines extrapolated from
bipolar (fop) and magnetogram (bottom) boundary data.

approximation becomes better as z increases. This fact is used
to save computation time by restricting the field computation to
components with |el%?| > 1073,

2.2. Properties of the magnetic field

Figure 3 displays the force-free magnetic fieldlines of the bipolar
test case (top) and the SOHO/MDI magnetogram (bottom). The
a parameter is such that @/ = 0.03, corresponding to a force-free
scale 1/a of about 2 x 10* km. The field lines start at z = 0 at
random with density proportional to |B|. Several field-line inte-
gration schemes have been tested, and the force-free condition
was also verified using finite 3-dimensional differences. Most
field lines connect the two poles of opposite polarity, but not
all, because the sparse-Fourier field does not vanish outside the
poles, nor outside L X L.

The absolute scaling of B is constrained by the SOHO/MDI
data for Fig. 3 (bottom), which give a longitudinal photospheric

rms field v(B,o(x,y)?) = 50 G with excursions to +400 G at
the footpoints. These values are typical of active regions; the
average over the quiet solar surface is lower (~1 G, see Kotov
2002). The mean-square magnetic field strength is related to the
Fourier amplitudes by (B.(x,y,0)?) = § ¥ [b«(k)|* and similar
relations for B, and B..

2.3. Electric field

Since the configuration is assumed to be time-independent, the
electric field has only an Ohmic component E = nj. The (scalar)
resistivity 7 is either zero or anomalous, i.e., much higher than
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Fig. 4. Different definitions of dissipation regions. Top: current thresh-
old. Bottom: magnetic twist threshold. Both panels refer to the magne-
togram of Fig. 3 (bottom). It is the twist threshold which is used in the
sequel of this paper.

the collisional value 7spier (Helander 2002). Regions with 77 >
Nspizer are called “dissipation regions” here. Owing to the force-
free condition V X B = aB, the electric field E = naB is purely
parallel.

Different criteria for the occurrence of anomalous resistiv-
ity have been proposed, relying on linear micro-instabilities or
heuristic arguments. A well-known argument limits the elec-
tric current to jo. = encs where ¢ is the speed of sound
(Papadopoulos 1980); an excess |V X B| > j. is then said to
produce shocks and dissipation in the current-carrying electron
fluid. The resulting dissipation region |j| > j. is depicted in
Fig. 4 (top) for the configuration of Fig. 3 (bottom). As the force-
free current is proportional to the magnetic field, the dissipation
regions simply delineate the magnetic field strength.

Another approach invokes the twist or shear of magnetic
field lines rather than the electric current density. The physical
motivation for this stems from the observation that regions of
larger magnetic field should also be able to guide stronger cur-
rents before disruption. Thus the automatic increase of j. with
increasing | B| should be compensated, which is achieved by con-
sidering the quantity
.~ B
b Bl 5)
rather than B. The criterion for the occurrence of anomalous re-
sistivity is then defined by

IV x b| < ue. (6)

The resulting dissipation regions are shown in Fig. 4 (bottom);
the top and bottom panels represent equal dissipation volumes.
It follows from the force-free condition that b - V x b = a.
Thus, for constant «, the field-aligned component of the mag-
netic twist V x b is constant throughout the whole volume. This
implies, in particular, that |V><l3| can never be smaller than «, and
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that the threshold u. must be higher than «. In Fig. 4 (bottom),
u./a = 6.6. Since small scales with k;, > a decay exponentially
with height, the steep gradients, and thus the dissipation regions,
tend to accumulate at low altitudes. This agrees with the observa-
tion that the coronal heating function is localized within a height
range $10* km (Aschwanden 2001). The dissipation regions are
thus not uniformly distributed in height, and the dissipative vol-
ume Vj can be characterised by a column height

hg = Vq/ L @)

rather than by a volume fraction referring to the full numerical
domain L?H. In the case of Fig. 4 one has hq = 0.191.

Condition (6) is local. Non-local versions of Eq. (6) have
been used by Georgoulis & Vlahos (1998) along pairs of mag-
netic field lines and by Vlahos & Georgoulis (2004) on a discrete
lattice. We use Eq. (6) here, since it can be evaluated at the parti-
cle position and thus simplifies the simulation. The threshold u,
is chosen such that u./ = 0.2.

3. Particle orbits
3.1. Dimensionless units and physical scaling

The system of units used in this article is similar to the one in
Arzner & Vlahos (2004). Time is measured in units of Q! where
Q? = 134 1b(k)P is the non-relativistic mean-square gyro fre-
quency at z = 0. Velocity is measured in units of the speed of
light, energy in units of mc?, momentum in units of mc, and dis-
tance in units of Iy = cQ~!. We take (|B(x,y,0)[*)!/? = 50 G
(see Sect. 2.2) to fix the absolute scaling, so that the electron cy-
clotron frequency is 140 MHz, the time unit is Q1=107s, and
the length unit /[y = 0.3 m. The electric field is measured in units
of ¢B, and the resistivity 7 in units of ¢ Q!

3.2. Exact orbits

In the above unit system, the exact particle equations of motion
read

dx
P ©
do
yazva+E—(v-E)v ©))

where E = nV X B and y = 1/V1—1? is the Lorentz fac-
tor. Equations (8) and (9) are integrated by a traditional Cash-
Karp/Runge-Kutta method (Press et al. 1998) with an adaptive
time step. The sparse-Fourier fields are computed at a lower rate,
together with their Jacobians, from which a linear extrapolation
to the actual particle position is made. The time step is chosen
such that both the Cash-Karp error and the field extrapolation
error remain within given bounds (Appendix A).

3.3. Gyrokinetic approximation

In the magnetic fields considered here, ranging from a few to
a few hundred Gauss, and for typical kinetic energies between
1 keV and 1 MeV, the electron Larmor radius yv, /Q varies from
centimetres to hundreds of metres, and is therefore small com-
pared to the resolution of the magnetic field (I ~ 10° km). The
motion is thus almost always adiabatic, with possible exceptions
at critical points in the magnetic field, and inside the dissipa-
tion regions. This suggests a gyrokinetic approximation with the
possibility of switching to exact orbits if necessary.
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We base our guiding-centre mover on a relativistic (Brizard
1999) version of the gyrokinetic equations of Littlejohn (1981,
1983). The variables considered are (X, p, ®, u), where X is the
guiding centre position, p; = v, the momentum parallel to the
magnetic field, ® the gyro phase, and 4 = 1y*02 /B is the mag-
netic moment, which is a motion integral in the present approxi-
mation. The coordinates (X, p;) evolve according to

dX 1 A 2

2 (P EpxvB-bxE (10)

dt Bﬁ y Y

d 1

P _ __p.(Fyp_E (11)

dt B~ \y

where y = 1+Pﬁ +24B and

B = B+pHVX5 (]2)

ob

E* = E - py— 13

Pig; (13)

with Bﬁ = B* - b. For our time-independent force-free magnetic
field, E* equals E and the last term in Eq. (10) vanishes.

In order to switch back to exact orbit integration, we need to
keep track of the gyro phase. In gyrokinetic approximations, the
gyro phase is not unambiguously defined but subject to gauge
freedom. Accordingly, various definitions have been proposed.
We follow Littlejohn (1988) here. Let & be a unit vector in the
direction of the initial (¢ = 0) Larmor radius. The vector &; is
perpendicular to the direction b of the local magnetic field, and
a local Cartesian triad is completed by setting &, = &, x b. The
task is to follow the unit vector &; along the gyro centre, in-
troducing a minimum of twist. This is achieved by solving the
parallel transport (Fermi-Walker type) equation

de, _ 5 db .
ds — \ds !
where s is the distance along the gyrocentre orbit. The gyro
phase, with respect to the direction &, is then given by ® =
fot vy UB(X(?'))|dr’, and the exact orbit parameters (x,v) can be

retrieved from (X, v, 4, ©, ). More details and the benchmark-
ing of our numerical approach are described in Appendix A.

(14)

4. Simulation results and observational predictions

The slab-shaped simulation domain suggests a simple scheme
of observational diagnostics, which is sketched in Fig. 5. In
this scheme, HXRs are associated with electrons impacting
z = 0, where they are stopped by the rapidly increasing density'.
Electrons that remain magnetically trapped are associated with
gyrosynchrotron emission, and electrons that leave the simula-
tion domain at z = H are associated with radio type III emission
at the local plasma frequency.

We performed several simulation runs with varying parame-
ters of the electromagnetic fields. One of these runs is discussed
in detail in Sects. 4.1 to 4.4, while the outcome of the others is
summarised in Sect. 4.5. In all simulations, electrons with ini-
tial velocity vp = O.1c (Ey = 2.6 keV) are injected at t = 0

! Strictly speaking, z = 0 delineates the photosphere probed by the
SOHO/MDI magnetogram, and not the density step (transition region)
seen by the precipitating electrons. We do not make this distinction here
since our model does not include a background density profile.
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Fig.5. Schematic allocation of different emissions from high-energy
electrons. Precipitating electrons are associated with HXRs, and escap-
ing and trapped electrons with radio emission. Black lines symbolize
magnetic field lines; boldface ellipses symbolize dissipation regions.

inside the dissipation regions, and traced until one of the follow-
ing conditions is met: z < O (“precipitation”), z > H (“escape”),
or t > Thax (“trapping”). The simulation duration T,y is long
compared to the average arrival times at z = 0 and z = H. Also,
Tmax s long compared to the free escape time 79 = H/vg calcu-
lated on grounds of the initial velocity. The synchronized injec-
tion at t = 0 is somewhat artificial since we used magnetograms
of a non-flaring active region. We chose this initial condition in
order to model HXR and radio transients and thus provide ad-
ditional (timing) diagnostics in situations where an observable
flare pulse occurs, based on the assumption that flares are large-
scale versions of the process considered here. The predictions
will, though, only be qualitative, since the time evolution of the
flaring region is not taken into account.

4.1. Electrons

The outcome of a typical simulation is summarised in Fig. 6.
The top panel represents the exit rates at z = 0 and z = H.
Most particles exit through the z = 0 boundary, and the precipi-
tation rate has a sharp peak at Qt ~ 107 (not resolved in Fig. 6).
The escape rate peaks later. The remaining (trapped) population
gradually decreases (Fig. 6 middle; smaller times than the free
escape time Qty = 6 X 108 are not shown). A detailed look at the
particle orbits shows that these usually perform numerous visits
to the dissipation regions before reaching relativistic energies.
The fraction of time spent by the electrons inside the dissipa-
tion regions is quite different for the different populations. While
precipitating particles spend about 10% of their time inside the
dissipation regions, the escaping ones do so only for about 2%.
The trapped ones spend 14% of their time inside the dissipation
regions, but do not systematically gain energy. In contrast, the
escaping and — more pronounced — precipitating particles gain
relativistic energies. The terminal energy spectra are shown in
Fig. 6 (bottom). Non-Maxwellian tails occur in the precipitating
spectrum at energies E/mc? ~ 1. The trapped electron spectrum
refers to the end of the simulation (f = Tpay).

4.2. Hard X rays

Light curve and spectrum. In our model, the precipitating pop-
ulation is associated with HXR bremsstrahlung, with the HXR
time profile directly proportional to the electron exit time den-
sity at z = 0 (Fig. 7). Since z = 0 is an absorbing bound-
ary, we use the thick-target approximation. The (orientation-
averaged) bremsstrahlung cross section is taken from the fully
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Fig. 6. Precipitating, escaping, and trapped electrons. Top: exit rates at
the slab boundaries. Middle: remaining (trapped) particles. Bottom: ter-
minal kinetic energies. Qt = 5 x 10° corresponds to 5 s in real time.
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Fig. 7. Simulated HXR and type III light curves.

relativistic formula 3BN of Koch & Motz (1959). The resulting
HXR spectrum is shown in Fig. 8. At energies up to ~40 keV,
it can be fitted by a (hard) power law with index 1.4 (Fig. 8 in-
let). At higher energies, it decays exponentially and finally drops
off faster than exponentially at ~800 keV. Most of the exponen-
tial part and the super-exponential decay could usually not be
observed with X-ray observatories like RHESSI because of the
limited dynamic range (2—3 orders of magnitude for M class
flares; see Grigis & Benz 2004).

Impact map. The present simulation also predicts the sites at
which electrons impinge on the chromosphere (Fig. 9 left), and
allows a comparison of this with the boundary magnetic field
(Fig. 9 right, repeated here from Fig. 1 for more clarity). Since
we inject particles into all dissipation regions simultaneously,
the impact map represents a statistical prediction. There are two
observations to be made: first, the electrons tend to precipitate
at negative magnetic polarity. Second, the impact density peaks
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Fig.8. Thick-target bremsstrahlung spectrum from the precipitating
electrons.
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Fig. 9. Electron precipitation sites (leff) and boundary magnetic field
(right). Positive magnetic polarity is light; negative polarity is dark.

not at the centre of the sunspots or filaments, but at their borders.
The first observation is a simple consequence of the constant-a
assumption, by which the electric acceleration is always paral-
lel or antiparallel to the magnetic field®>. The second observa-
tion is a consequence of the mirroring in converging magnetic
field lines, which makes it hard for electrons to penetrate down
to z = 0 in regions of maximal |B(x, y,0)|. The actual impact
map represents a trade-off between the number of downstream-
ing electrons and their reflection probability, which is optimal at
the sunspot/filament boundaries.

4.3. Electron beams

Electrons that escape to altitudes z > H are considered as
a proxy for type III radio bursts. Contrary to the incoherent
bremsstrahlung and gyrosynchrotron radiation, the plasma emis-
sion of type III bursts is coherent and therefore not proportional
to the number of emitting electrons. The non-linear dependence
(say, ocN¢ with & > 1) compensates for the relatively tenu-
ous escaping population. The resulting time signal is shown in
Fig. 7, together with the HXR light curve. The scaling of the
two intensities is arbitrary. As the background plasma density
is not specified in our model, we cannot predict the emission
frequency of the plasma waves. However, we may consult the
observed density profiles at height H ~ 3 x 10* km, yielding
ne ~ 2.5 x 108 cm™ averaged over the quiet corona (Fludra
1999). This number varies by a factor 3 when equator-to-pole
variation is taken into account (Gallagher et al. 1999), and may
be larger by a factor 10 above faculae (Dumont et al. 1982). Thus

2 We have assumed positive a here and that the electrons have a pos-
itive charge.
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15 20

Fig. 10. Gyrosynchrotron intensity according to the exact expression
(Eq. (15) — crosses) and its approximation (Eq. (16) — dotted line).

we associate a plasma density of 10% cm™ to 2 x 10° cm™ with
the z = H boundary of our simulation slab, corresponding to a
plasma frequency of 100 to 400 MHz.

4.4. Gyrosynchrotron emission

The electrons trapped in closed loops are thought to be respon-
sible for gyrosynchrotron radiation, manifesting in microwave
solar continuum bursts®. In this case there are many bursts that
are optically thin at all frequencies (Fleishman et al. 2003), and
we assume optically thin radiation for simplicity. Moreover, we
neglect the plasma response and consider emission in a vac-
uum. Therefore, our results apply to the emission at frequencies
above the spectral peak provided by either optical thickness or
the Razin effect. An electron on a circular orbit emits then, at
frequency nw/7, the intensity (Schott 1912)

n2w? )
I, = 7 (tan2 6 J(nvcos ) + v*J.*(nv cos 9)) (15)
where n is an integer, w = eB/m the local cyclotron frequency,
and 6 the angle between the gyration plane and the line of
sight that is taken along the z-direction. In our simulation, most
trapped electrons have velocities v < 1 (Fig. 6 bottom), so that
the argument of the Bessel functions in Eq. (15) is small and
J,(2) can be approximated by (27n)"'/?(ez/2)" (Abramowitz &
Stegun 1970), yielding

2n

, (16)

w? 1 +sin%0 n 'evcose

I, =~
2

y2 cos2@ 2n

where Euler’s number ¢ = 2.718 is not to be confused with
the elementary charge. The relative accuracy of the approxima-
tion (16) is about |vcos#| for all n; a numerical illustration is
shown in Fig. 10. From Eq. (16) we see that the intensity [, de-
cays exponentially with n, so that the radiation is concentrated
at low harmonics. In the limits v — 0 and 8 — 90°, only the
fundamental (n = 1) contributes. If the velocity has a component
parallel to the magnetic field and to the observing direction, this
results in a Doppler shift w — w*, and v in Egs. (15), (16) has to
be replaced by v, , the component perpendicular to the magnetic
field. Neglecting dispersion and absorption, we may thus obtain
the radio spectrum by accumulating a histogram of the frequen-
cies nw*/y with weight I, for all particles and times. The result
is shown in Fig. 11. Note that the spectrum decays monoton-
ically and approximately exponentially with frequency, which

3 In contrast, narrowband decimetric continua are explained better by
transition radiation (Fleishman et al. 2005; Nita et al. 2005).
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Fig. 11. Optically thin gyrosynchrotron spectrum emitted in the z direc-
tion. Different curves represent different times. Q = 1 corresponds to
about 1 GHz.

Table 2. Simulation parameters. In all simulations, Q™! = 10~ and
uld =0.2.

run Ny N, [lkm] H/I al n[c3/Q]  hy/l

1) 5000 128 875 40 0.05 438 0.56

2) 5000 256 660 50 0.05 6.84 0.50

3) 5000 256 @ 660 50 0.03 6.84 0.19

4) 5000 256 660 64 0.01 6.84 0.13

5) 1000 256 660 64 001 6.84 0.05

6) 1000 256 660 64  0.01 1.37 0.08

is different from the familiar synchrotron (y > 1) shape with
powerlaw rise and decay. Here, the exponential decay is mostly
caused by the harmonics dependence (Eq. (16)) but also sup-
ported by the exponential decay of magnetic field with height.
Individual harmonics are washed out because of the magnetic
field inhomogeneity.

4.5. Parameter exploration

We performed various production runs, involving a total CPU
time of about 4 months. Different runs have different values for
the parameters H (slab height), @ (force-free parameter), and 1;
see Table 2. The critical twist is fixed at u./ = 0.2. The simula-
tion discussed in Sects. 4.1-4.4 is labeled 3 and represents an in-
termediate case. Each simulation involves several 10° particles.
An overview on the simulation results is presented in Fig. 12.
Column a) contains the electron exit rates at z = 0 (black line)
and z = H (gray line) during the first third of the simulation time,
normalized by the total number of simulated electrons. Column
b) shows the energy distributions at the end of the simulation (¢ =
exit time, or t = Tax). Translation of the electron results into
HXR and radio wave predictions proceeds similar as in Sects. 4.2
to 4.4, and preserves the hardness ordering of the spectra.

The simulations 1 to 6 may be summarised by saying that
the results of Sects. 4.1 to 4.4 are generic, in the sense that the
general shape and relative timing of the light curves are robust
against variation in (H, @, 7). However, the time scaling, the di-
vision into precipitating and escaping populations, and the spec-
trum depend on the parameters (Table 2). The time delay be-
tween the precipitation pulse and the onset of escape (Fig. 12
left) increases naturally with slab height H. It also depends on
the force-free parameter «, yet in a subtler way. From the com-
parison of simulations 2 and 3, it is seen that a higher « favours
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Fig. 12. Parameter exploration. Left column: exit rates. Right column: terminal energy spectra. Black (gray, light gray) lines refers to precipitating
(escaping, trapped) populations. See Table 2 for the simulation parameters.

prompt escape. This is not immediately obvious, since a higher @
implies a smaller force-free scale 1/« and thus smaller magnetic
loops that do not protrude to z = H. However, a higher « also
admits more non-decaying modes (k; < «) and thus more open
field lines along which the electrons can escape. Moreover, a
higher a implies larger curvature, so that the criticality condi-
tion (Eq. (6)) is more frequently met and the accelerating vol-
ume is larger (hq = 0.5/ in simulation 2 but g = 0.19/ in sim-
ulation 3). As a net effect, a large force-free parameter a thus
favours rapid acceleration and escape. A similar enhancement
of acceleration by the presence of small scales accounts for the
difference between panels 4 and 5 in Fig. 12. These simulations
differ only by the number of Fourier components. Run 4 contains
wave vectors up to k, [ < 1.94, whereas run 5 contains wavevec-
tors k; I < 0.8. Accordingly, run 4 reaches somewhat higher en-
ergies (panels 4b and 5b). The escape time also increases (and
the escape probability decreases) with decreasing anomalous re-
sistivity and thus with decreasing electric field (5a vs. 6a). The
trapped component is throughout softest, except for the case of
very small resistivity (run 6) where all 3 populations behave sim-
ilarly for E/mc* 2 0.1. Run 6 is similar to run 5 but with smaller
resistivity, balanced by a somewhat larger dissipation volume.
As a general trend, Fig. 12 (top to bottom) shows that smaller
dissipation volumes and weaker electric fields yield a more

gradual evolution and less intermediate energies (0.1 < E/mc? <
1) but a comparable amount of high energies, so that the energy
histograms have more tenuous but harder tails. This reflects a
change of the nature in acceleration from frequent and small en-
ergy increments to rare but violent energy gains, in the course of
which the stochastic process leaves the domain of attraction of
the central limit theorem.

5. Summary and discussion

We have simulated gyrokinetic electron orbits in constant-a
force-free magnetic fields with anomalous resistivity 7. The lat-
ter is localized in (postulated) dissipation regions where the
magnetic twist V x b exceeds a given threshold u, correspond-
ing to a critical scale 1/u. ~ 3000 km. The dissipation regions
cover about 1073 of the simulated slab volume and can be char-
acterized by a column height 24 of 30 to 300 km. The (paral-
lel) dissipative electric field exceeds the Dreicer field by one or
two orders of magnitude and yields direct acceleration of run-
away electrons. In general, the electrons visit numerous dissipa-
tion regions before reaching relativistic energies, and arrive at
the chromosphere before escaping to the higher corona. The lat-
ter ordering agrees with an observed trend for HXR to precede
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Fig. 13. The distribution of precipitating, escaping, plus trapped particle energy (black line) and the distribution of voltage drops (gray line).

type III bursts (Aschwanden et al. 1992; Arzner & Benz 2005),
also in terms of absolute time delays.

From a physics point of view, one may compare the energies
reached in Fig. 12 to the voltage drop along the magnetic field
line inside a (simply connected) dissipation region 9. (We use
here the term “voltage drop” rather than “potential drop” since
E = nj is not a potential field.) The quantity AV = f@ E-dl gives
an upper limit to the energy that can be gained inside a single dis-
sipation region; reflection from converging field lines (and also
deceleration from E itself) does generally prevent the particles
from exploiting the full voltage drop. By choosing 5 x 10? ran-
dom points inside the dissipation regions and following the mag-
netic field lines going through these points, we find the distri-
bution of voltage drops as shown in Fig. 13, together with the
distribution of all terminal electron energies. Both kinetic en-
ergy and voltage drops are measured in units of the electron rest
mass. As can be seen, the two distributions scale similarly in
energy from one simulation to another (note the different en-
ergy axes!), and the sub-exponential tails of the particle energy
occur above the largest voltage drop present in the simulation.
This agrees with the observation that many dissipation regions
are visited before the particles reach the highest energies. The
root mean square voltage drops AV, are of the order of the
voltage drop across the magnetogram resolution, nal. The dis-
tribution of voltage drops decays slower than the distribution of
particle energies, which relates to the fact that AV, is merely
an upper bound on the kinetic energy gain. The peak of the par-
ticle distributions at lowest energies is mostly due to the trapped
component.

The present model predicts a statistical preference for the
HXR to occur at one magnetic polarity, because of the assump-
tion of constant @, by which the electric field E = naB is always
parallel (@ > 0) or antiparallel (¢ < 0) to the magnetic field.
The electrons tend to impact the chromosphere not in the centre
of sunspots or filaments (where |B| is largest) but at their bor-
ders. Ions, due to their opposite charge, should tend to impact

at opposed magnetic polarity (but the ion dynamics is not di-
rectly comparable to the electron dynamics because of the large
mass ratio). The experimental verification or falsification of this
model prediction, using non-randomized force-free extrapola-
tions and spatially-resolved X-ray (e.g., RHESSI) observations
of flaring active regions, will be the subject of future investiga-
tions. It should also be pointed out that the impact map (Fig. 9) is
obtained from simultaneous injection in all dissipation regions.
If injection were restricted to a single dissipation region or group
of dissipation regions, then only few impact regions would oc-
cur, as usually observed in individual solar flares.

Finally, we should mention that the present approach has
many caveats. Most prominent among them is that test parti-
cle simulations cannot tell us anything about the absolute num-
ber of electrons that are accelerated, and their application to
the real solar corona requires caution in order to match global
electrodynamic constraints (i.e. return currents; Spicer & Sudan
1984). As a rule, our simulations can only account for a tenu-
ous high-energy tail, because the back-action on the electromag-
netic field and Coulomb collisions are neglected. Then, we used
magnetograms of non-flaring active regions here — where the
force-free extrapolation should be a good approximation — and
have thus envisaged “quiescent” coronal heating by nanoflares
rather than large isolated events. The observable predictions,
though, address sizable flares where all types of emission can be
detected.

We suggest that the actual flares are generated by a sim-
ilar process, and should thus have similar characteristics.
Conversely, the non-flaring active regions are constantly doing
what flaring active regions do but in smaller, possibly unde-
tected numbers. This coronal process may account for spatial
X-ray and radio fine structures in quiet solar regions (Benz et al.
1997) and non-thermal electrons measured in space during quiet
times (“superhalo”; Lin 1998), as an alternative explanation of
MHD wave acceleration in the solar wind. Also, the assumption
of a time-independent magnetic field is only an approximation.
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It is certainly violated during large flares with re-structuring of
the global magnetic topology. Also, it does not formally account
for the continuous footpoint motion driving the Parker (1983)
scenario. However, it may be a reasonable approximation for
medium-size flares, where the Parker mechanism does not de-
stroy the overall magnetic field structure. This point of view is
supported by the work of Aulanier et al. (2005a,b) who numeri-
cally study the evolution of magnetic flux tubes and quadrupolar
configurations under sub-Alfvénic photospheric motion. Their
(incompressible, resistive) MHD simulations demonstrate that
current sheet formation and topological changes may be de-
scribed by a sequence of quasi-equilibria, so that a static approx-
imation over a few ten seconds seems appropriate. With regard
to particle acceleration, the temporal evolution of the magnetic
fields is expected to decrease trapping and facilitate both precip-
itation and escape.
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Appendix A: Numerical implementation
A.1. Regime switching and accuracy control

The choice of the orbit integration method, exact or gyroki-
netic, depends on two constraints. From a physical point of view,
the gyrokinetic approximation requires the Larmor radius to be
small compared to the scale of the magnetic field, p <« /. From a
numerical point of view, the gyrokinetic approximation is faster
than exact orbit integration whenever the latter is dominated by
particle motion rather than by field evaluation. Indeed, if 7¢ de-
notes the CPU time needed for a single field evaluation and 7,
is the CPU time needed to resolve a single gyration, then the
gyrokinetic approximation is, by a factor

f=E><£,
P

T

(A1)

faster than exact orbit tracking. The time 7, is approximately in-
dependent of the integration scheme as long as this is optimal,
and a typical value on a medium-size workstation is found to be
7y ~ 5x 1075 s. The time cost of a single field evaluation, on
the same hardware, is 7; ~ Ny X 5 x 107%s with N, the number
of Fourier components, so that the gyrokinetic method is nu-
merically beneficial for Ny < 10 X I/p. Thus, if the gyrokinetic
approximation is physically allowed (I/p > 1), then it is also
numerically beneficial in the sparse-Fourier representation; the
upper bound on Ny is rarely met in practice.

We turn now to the precise (and implemented) formula-
tion of regime switching and accuracy control. The gyrokinetic
approximation requires that the magnetic field change slowly
across a Larmor radius, (VB) - p < B, where VB is the
Jacobian and ¢, < 1. For practical purposes, we replace this
by the stronger and computationally less expensive constraint
o’ i) 10:B;I> < eéB2 with p = |p|/B. The quantity p also in-
cludes parallel momentum, so that the condition accounts for
particle acceleration inside the dissipation regions. In addition
to the gyrokinetic approximation error, there are numerical er-
rors from the finite time step and field computation rate. These
are controlled by limiting the Cash-Karp position- and momen-
tum errors and by enforcing re-calculation of the electromag-
netic fields if |Ax|* 3;;10;B;I* > €5, where Ax = x — X,q is the
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Fig. A.1. Benchmark of the orbit integration schemes, showing posi-
tion (left column) and velocity (right column) of a relativistic electron
in strongly curved (I/ly = 10) magnetic fields. The solid line repre-
sents exact orbits (Egs. (8), (9)); dotted line, gyrokinetic approximation
(Egs. (10)—(14)). Gray crosses represent the hybrid mode, with the ex-
act regime marked as dark and the gyrokinetic regime marked as light.

distance to the last field-evaluation point x,4. Using the same
Jacobian, the fields are linearly extrapolated from x,yq4. In or-
der to avoid relentless switching between exact and gyrokinetic
regimes, a minimum duration of one gyro period in each of the
regimes is enforced.

A.2. Benchmarks

The exact orbits have been computed with different integration-
and field evaluation schemes. The time integrators include the
Verlet scheme and other leapfrog variants, and Runge-Kutta
schemes with and without adaptive time stepping. The field
evaluation was done either pointwise or with linear interpola-
tion involving VB. Once the exact orbits were established, they
were used to benchmark the gyrokinetic orbits. As an example,
Fig. A.1 displays individual Cartesian components of position
and velocity in an extreme situation, i.e. for a highly relativistic
(v = 0.99¢) particle with small magnetic scales (//ly = 10), the
gyrokinetic approximation, and the hybrid mode with automatic
regime switching. In the hybrid method, the particle starts with
exact orbit integration and switches to the gyrokinetic descrip-
tion at Qt ~ 10. It remains then in the gyrokinetic mode, until
at Qr ~ 120 a region of strong magnetic curvature is encoun-
tered, where exact orbit tracing is enforced. At Q¢ ~ 200 the or-
bit switches back to the gyrokinetic method. During the gyroki-
netic phase, the magnetic moment is conserved to within 0.1%,
but varies during the exact-orbit phase by some 80%. As can be
seen, the hybrid orbit is closer to the exact result than the purely
gyrokinetic orbit.
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