

Mode coupling in non-axisymmetric solar dynamo models

Alberto Bigazzi Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology

Chalkidiki, 27 Sept2003

Basic Processes of Turbulent Plasmas Chalkidiki, Greece.

The Sun and the Sunspot Cycle

• At the beginning of any new cycle, sunspots appear at latitudes between 30 and 45 degrees. and subsequently migrate equatorwards, concentrating within the 30° latitude belt.

Longitudinal structure: preferred longitudes

- Magnetic features appear at particular longitudes.
- Cycle 22: sol min (1996)
- Five major active regions emerge all at the **same** Carrington longitude of about 250°. (mid April - late July). DeToma, White & Harvey, 2000
- Persistence of active longitudes has been calculated up to 120 years. Berdyugina & Usoskin, 2003
- Threshold mechanism in the presence of an underlying mean-field component ? Ruzmaikin 1999

Preferred longitudes in the Solar Wind

- The poloidal field of the Sun opens into the interplanetary space carried by the solar wind.
- Non-axisymmetric components of the poloidal field appear as rotating patterns in the interplanetary field.
- In interplanetary field, magnetic field patterns have been found to have a period of 27.03 days (428nHz), through several solar cycles. Neugebauer, Smith, Feynman, Ruzmaikin, 2000.

- KEYWORDS:
 - Persistence
 - Clustering

Coherent Structures in MHD turbulence.

- Analysis of turbulence at moderate Reynolds number Brandenburg, Jennings, Nordlund, Rieutord, Stein, Tuominen 1995
- Structures in vorticity and in magnetic field do not coincide.

Bigazzi,Brandenburg,Moss , Phys.Plasmas 6 72-80 (99)

Coupling of the dynamo azimuthal m-modes

• Observations suggest, that modes are coupled.

Ruzmaikin, Feynman, Neugebauer, & Smith, 2001

Where is the solar dynamo?

What is this telling us about the dynamo

- Presence of a non-axisymmetric mean-field which
 - 1. Is concentrated at low latitudes
 - 2. (possibly) maximum close to the tachocline
 - 3. Rotates with a frequency close to 27 days
 - 4. Is modulated with the solar cycle period.

Turbulence and the α -effect: mean field dynamo.

• Take the induction equation

 $\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \boldsymbol{\nabla} \times \eta \boldsymbol{\nabla} \times \boldsymbol{B}$

• and separate out the mean from the fluctuating part.

$$oldsymbol{B}=\overline{oldsymbol{B}}+oldsymbol{B}' \hspace{1cm}oldsymbol{u}=\overline{oldsymbol{u}}+oldsymbol{u}$$

• You get an equation for the mean field.

$$\frac{\partial}{\partial t}\overline{\boldsymbol{B}} = \boldsymbol{\nabla} \times (\overline{\boldsymbol{u}} \times \overline{\boldsymbol{B}}) + \boldsymbol{\nabla} \times \overline{\boldsymbol{u}' \times \boldsymbol{B}'} + \eta \nabla^2 \overline{\boldsymbol{B}}$$

• An electric field proportional to the mean field and its derivative results.

$$\boldsymbol{\mathcal{E}}_{i} = \overline{\boldsymbol{u}' \times \boldsymbol{B}'}_{i} = \alpha \delta_{ij} \overline{\boldsymbol{B}}_{j} + \beta \epsilon_{ijk} \overline{\boldsymbol{B}}_{j,k}$$

• You have a source and a diffusion term coming from your underlying turbulence.

$$\frac{\partial}{\partial t}\overline{B} = \underbrace{\nabla \times (\overline{u} \times \overline{B})}_{\Omega - \text{effect} + \text{merid circ}} + \underbrace{\nabla \times \alpha \overline{B}}_{\alpha - \text{effect}} + \underbrace{(\eta + \beta)}_{\text{Turb diff}} \nabla^2 \overline{B}$$

Toroidal and poloidal potentials

• Two variables: T, P:

$$\boldsymbol{B}_T = \boldsymbol{\nabla} \times \mathbf{r} T$$
$$\boldsymbol{B}_P = \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{r} P$$

• Two coupled equations:

$$\begin{array}{lll} \partial_t T &=& R_\Omega V_\Omega + R_\alpha V_\alpha + R_M V_M \\ &+& \eta \nabla^2 T + \partial_r \eta \cdot \frac{1}{r} \partial_r (rT), \\ \partial_t S &=& R_\Omega U_\Omega + R_\alpha U_\alpha + R_M U_M \\ &+& \eta \nabla^2 S \end{array}$$

• Non-dmensional numbers:

$$R_{\Omega} = \frac{\Omega_0 R_{\odot}^2}{\eta_0}, \quad R_{\alpha} = \frac{\alpha_0 R_{\odot}}{\eta_0}, \quad R_M = \frac{u_M R_{\odot}}{\eta_0}.$$

Toroidal and poloidal potentials

$$\partial_t T = R_{\Omega} V_{\Omega} + R_{\alpha} V_{\alpha} + R_M V_M + \eta \nabla^2 T + \partial_r \eta \cdot \frac{1}{r} \partial_r (rT), \partial_t S = R_{\Omega} U_{\Omega} + R_{\alpha} U_{\alpha} + R_M U_M + \eta \nabla^2 S$$

• Relation between the scalars U, V and the sources.

$$((\boldsymbol{\Omega} \times \mathbf{r}) \times \boldsymbol{B})_T = -\mathbf{r} \times \boldsymbol{\nabla} U_{\Omega},$$

$$\boldsymbol{\nabla} \times ((\boldsymbol{\Omega} \times \mathbf{r}) \times \boldsymbol{B})_P = -\mathbf{r} \times \boldsymbol{\nabla} V_{\Omega},$$

$$(\boldsymbol{u}_M \times \boldsymbol{B})_T = -\mathbf{r} \times \boldsymbol{\nabla} U_M,$$

$$\boldsymbol{\nabla} \times (\boldsymbol{u}_M \times \boldsymbol{B})_P = -\mathbf{r} \times \boldsymbol{\nabla} V_M,$$

$$(\alpha \boldsymbol{B})_T = -\mathbf{r} \times \boldsymbol{\nabla} U_{\alpha},$$

$$\boldsymbol{\nabla} \times (\alpha \boldsymbol{B})_P = -\mathbf{r} \times \boldsymbol{\nabla} V_{\alpha}.$$

• Those relations can be solved numerically

Longitudinal m-modes.

• Expansion in longitudinal m-modes as:

$$T(r,\theta,\phi) = \sum_{m=0}^{N} T^m(r,\theta) e^{im\phi} + cc, \dots$$

• Theorem: when \overline{u} , α and η are axisymmetric, the equation decompose into an independent set per each m-mode.

$$\partial_t T^m = L^m(T^m, S^m) \partial_t S^m = G^m(T^m, S^m)$$

- Modes are decoupled.
- Non-axisymmetric α naturally couples the modes.

$$(\alpha \boldsymbol{B})^m = \sum_{j=-N}^N \alpha^j(r,\theta) \boldsymbol{B}^{m-j}(r,\theta)$$

Consider the lowest modes m = 0, m = 1.

$$(\alpha \boldsymbol{B})^1 = \alpha^0 \boldsymbol{B}^1 + \epsilon \alpha^1 \boldsymbol{B}^0$$

Our dynamo model: numerical setup.

- \bullet Non-spectral
 - Legendre transform is numerically expensive
 - No fast algorithm like FFT exists
 - Ease of parallelization
- Regular grid in r, $\theta,$ typically 80 x 160 grid points.
- Solves for m = 0 and the first non-axisymmetric mode m = 1
- Outer boundary conditions: potential.

- We include the rotation curve of the Sun
- Coupling is introduced through the non-axisymmetric α
- A variable profile of turbulent diffusivity $\eta(r)$ defines the core boundary.
- We consider three different models for the distributions of α , see figure above.

Localization of the field.

- $\bullet\,$ In latitude: the non-axisymmetric mode concentrates around $30^\circ\,$
- In radius: the field maximises close to the Tachocline
- Surface α : No field at the tachocline.

Localization: solar differential rotation

- The radial gradient of angular velocity is close to null at 30°
- That is where the non-axisymmetric (toroidal) field concentrates (when α overlaps with the shear layer, tachocline, at $0.6R_{\odot}$).
- The angular velocity distribution is reconstructed from helioseismic data Thompson, M.J. 2000

Cycle period and phase relations

• The m = 1 mode has the same cycle period as the m = 0 mode.

- The phases between S and T potentials, modes m = 0 and m = 1, are consistent with observations (case α_1 is displayed):
 - S_1 is max at T_0 min.
 - S_1 is max after S_0 min.

Rotation rate of the m = 1 mode

- The radial (poloidal) field at surface rotates with a rate of 442nHz (core rotation), M1 and M3, and 433nHz, M2.
- In interplanetary field a rotation of 27.03 days (428nHz) has been found. Neugebauer, Smith, Feynman, Ruzmaikin, 2000.
- Fast Ulysses scan at solar max, 2000-2001 (CR1970-CR1981): 432 \div 437nHz rotation rate of the m = 1 mode (tachocline rate). Jones, Balogh & Smith, 2003

Conclusions

- The coupling of dynamo modes due to a non-axisymmetric $\alpha\text{-}$ effect, is responsible for
 - The latitudinal localization around 30° of the non-axisymmetric mode due to the solar rotation curve.
 - The 11 yr cycle for both the m = 0 and m = 1 components.
 - Preferred Longitudes:
 - Longitudinal localization of the fields due to the m-modes of the dynamo-generated fields.
 - Rate of rotation of surface fields determined by the global evolution of magnetic fields rather than from pure surface phenomena.
- How a non-axisymmetric α is produced?
 - Magnetic and/or hydro instabilities
 - Other mechanisms?

Bigazzi & Ruzmaikin 2003, ApJ, submitted

Meridional circulation

• Shallow and deep meridional circulation:

- Diffusivity decreased, below the tachocline, to 1/200 the convection zone value.
- Velocity close to the surface of order $20\mathrm{m/s}$
- Velocity at the bottom 1/10 of surface velocity.
- Distribution is not radically changed.

- m=1 mode still concentrated at 30° latitude.

• Cycle period and symmetry are more sensitive.

Full Screen

Close

Quit

• Ulysses data support a $432 \div 437$ nHz rotation rate of the m = 1 mode, which correlates with the rotation rate of the tachocline.