“I am an old man now, and when I die and
go to Heaven there are two matters on which
I hope enlightenment. One is quantum
electro-dynamics and the other is turbulence.

About the former, I am really rather
optimistic”

Sir Horace Lamb (1932)

From S. Goldstein, Ann. Rev. Fluid Mech, 1, 23 (1969)



“What is turbulence 7
Turbulence is like pornography.
It is hard to define,
but if you see it, you recognize it
immediately”

G. K. Vallis, 1999



M100 galaxy 1023 m

Eagle nebula 10 m

Earth's atmosphere 10" m

E

Clouds 103 m

S8 Soap film 101 m



The mathematical description of fluid motion

LLeonhard Euler 1757

u—+ (u-V)Yu=—-Vp
V-u=0

Claude L. M. H. Navier 1827

George G. Stokes 1845

oru+ (u-V)u=-Vp+rvAu
V-u=0




. actually, the Navier-Barré de Saint-Venant

equations ...

Adhémar J. C. Barré de Saint-Venant (1843)



The dimensionless Navier-Stokes equations
u — u/U x — x/L t — Ut/L

ou—+ (u-V) u=-Vp—+ Re 1Au

Fully developed turbulence

Re — o0

Typical Reynolds numbers:

Re ~ 107 atmospheric turbulence (air)
Re ~ 10% pipe/channel flow (water)




Turbulence in the lab

Osborne Reynolds
Phil. Trans. R. Soc., 174 935 (1883)

XXIX.  An Eaxperimental Investigation of the Circumstances which determine
whether the Motion of Wuter shall be Direct or Sinuous, and of the Law of
Resistance 1n Parallel Channels.

By Osporve REvyorps, FLR.S.

Received and BRead March 15, 1883,




Transition to turbulence

942 MR. 0. REYNOLDS ON THE MOTION OF WATER AND OF

tubes were immersed, arrangements being made so that a streak or streaks of highly
coloured water entered the tubes with the clear water.

The general results were as follows :—

(1.} When the velocities were sufficiently low, the streak of colonr extended in a
beautiful straight ling throngh the tube, fig. 3.

=

(2.) If the water in the tank had not quite settled to rest, at sufficiently low
velocities, the streak would shift about the tube, but thers was no appearance of
sinuosity,

(3.) As the velocity was incrensed by small stages, at some poinl in the tube, always
at & considerable distance from the trumpet or intake, the colour band would all at
once mix up with the surrounding water, and fill the rest of the tube with a mass of
coloured water, as in fig. 4.

Fig. 3.

Fig. &

=

Any incrense in the velocity caused the point of break down to approach the
trumpet, bat with no velocities that were tried did it reach this.

On viewing the tube by the light of an electric spark, the mass of colour resolved
itself into a mass of more or less distinet eurls, showing eddies, as in fig. 5.

Fiz. 5.

rt ABFLRIGT

The experiments thus seemed to settle questions 8 and 4 in the affirmative, the
existence of eddies and a critical velocity,

They also settled in the negative question 6, as to the eddies coming in gradually
after the critical velocity was reached.

In order to obtain an answer to question 5, as to the law of the eritical velocity,
the diameters of the tubes were carefully measured, also the temperature of the
water, and the rate of discharge.

(4} Tt was then found that, with water at a constant temperaiure, and the tank
as still as could by any means be brought about, the eritical velocities at which the




The Friction Law and the Reynolds number

Sectrow L
Tntroductory.

1. Objects and results of the investigation,—The results of this investigation have
both a practical and a philosophical aspeet.

In their practical aspect they relate to the law of resistance to the motion of water
tn pipes, which appears in a new form, the law for all velocities and all diameters
being represented by an equation of two terms.

In their philosephical aspect these results relate to the fundamental principles of
fluid motion ; inasmuch as they afford for the case of pipes a definite verification of
two principles, which are—that the general charvacter of the motion of fluids in contact
with solid suyfuces depends on the relution between o physical constant of the fluid and
the product of the linear dimensions of the space occupied by the fluid and the velocity.

The results as viewed in their philosophical aspect were the primary ohject of the

investigation,
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Averages, fluctuations
and the closure problem

u=U + u’ Reynolds’ averaging (1895)
U = (u) (u) =0

(U +U-VU = -VP+vAU -V - (u/u)

o(u'u'y + (U - V){(u'u') + V- (vu'u')y =
vA{(u'u) — v(Vu' - (Vu)T) — (u'u') - (VU)T

Can (u/u') be expressed in terms of U 7

(u'u'y = v[VU + (VU)T]

Ve. eddy-viscosity

Joseph Boussinesq (1897)

_ k2
Ve — Clu?

where k = (|u/|?) and ¢ = v(|Vu/|?)



Energy budget for the Navier-Stokes equation

E = %/ \u(ac,t)|2 dx

/ de{u-[Ou+ (u-V)u=—-Vp+ vAul}

u-(u-V)u=V-(Slufu)
u-Vp=V_(pu)

u-vAu = —v|Vul? + V. (vuVu)

db/ __
dat — €

where e = v [ |Vu|?dz

Statistically stationary turbulence — external forcing



The turbulent cascade
L = forcing scale

viscous scale

“ Big whorls have little whorls
That feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity”

Lewis Fry Richardson (1920)




From qualitative to quantitative

Geoffrey I. Taylor

Proc. Roy. Soc. A 151, 421 (1935)

Measuring turbulent flows

v

\ Platinum or Tung

Hot-wire made by

Platinum
hot-film

Hollow glass tube
or quartz fiber

hot wire/film
el

anemometry

Cooling water or coolant fdw through

Taylor's
“frozen turbulence” hypothesis

Uz (t) —u(t —7) = ug(z+ 1) — uzr ()
with r =Ur




The Taylor's microscale

A first definition of dissipative lengthscale

) 1/2
A\ =
(va)

where u?,; = (jul?)

IIra'/l-iﬂ"\\
o
(g (2)us (2 + 1)) /N
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R ROR RN
C(r) ~1—1r2/)2 /| ;' OL \ \\
for r < \ X ! "'”'”"%j ]
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Y inches

Fro. 1—Measured values of Ry = Tgliy 12 behind 0+9 inch by 0-9 inch honeycomb;
u? = 01015 (ft sec)®

Small-scale statistical homogeneity and isotropy

The Taylor microscale Reynolds number

R)\ _ UrmsA

1%

Velocity fluctuations

oru = ug(x 4+ 1) — ug(x)

characteristic velocity of an eddy of size r




The statistical description of turbulence

(...) Ensemble averaging

(O(x,t)) = (O(x,t")) Statistical stationarity
(O(x,t)) = (O(x',t)) Statistical homogeneity
(O(x,t)) = (O(Rx,t)) Statistical isotropy, R e SO(3)
(O(x,t)) = (O(—x,t)) Statistical parity invariance

Examples:

o (ui(x)uj(x + r)) = Br(r)(dij — 7i7;) + Br(r)rir;
Incompressibility imposes: By(r) = rB}(r) + 2Br(r)
Br(r): Longitudinal correlation function
Sp(r) =2(Br(0) - Br(r)) = ({[u(z+7) —u(z)]-7}%)
Longitudinal 2" order structure function

o (u;(k)u;(k)) = B(k)s(k+ K')(6;; — kik;)

E(k) = 4nk?B(k): Energy spectrum



Statistical theories of turbulence: Closures

8y (ad) + ik(aaa) = —vk2(aa) + (fa)
8,(0aa) + ik(daan) = —vk2(aaa) + (Faa)

and so ad infinitum

Quasi-normal approximation

(Ualiplctig) =

(Ualp) (Uctig) + (Ualc)(Uplg) + (Uallq) (Uplc)

M. D. Millionschikov (1939)

P. Y. Chou (1940)




Kolmogorov's phenomenological theory

Andrei N. Kolmogorov (1941a)

The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers+t

By A N. KoLMOoGoOROY

The first hypothesis of similarity. For the locally isotropic turbulence the
distributions F, are uniguely determined by the guantities v and €.

The second hypothesis of similarity. {f the wmoduli of the vectors ' and af thetr
differences 't — y* (where k # ') ave large in comparison with A, then the distribution
levws B, arve uniguely determined by the guantity € and do not depend on v,

B,ir) ~ Carl

WIN

Sr(r) = {[u(z + r) —u(x)] - 7}2) ~ Césr
E(k) =C'e3 k3



Kolmogorov's 4/5ths law (1941b)

Dissipation of energy in the locally isotropic
turbulence

By AN KoLMocoRov

In my note (Kolmogorov 1941a) I defined the notion of local izotropy and
introduced the quantities

By = [u (M) —ud{M}]Z.} )
where » denotes the distance between the points M and W, n (M) and (M) are the
velocity eomponents in the direction MM at the points M and M°, and w, (M) and
w (M) are the veloeity components at the points M and M in some direction,
perpendicular to WM.

In the sequel we shall need the third moments

B yualr) = [uylM') —ug (M), (2}
For the locally izotropic turbulence in incompressible fluid we have the eguation
1B 4 d*B,, 4dB
A 4| C8add L 2 p ) gy S 2 2 e g
+( dr ¢t Nde T ar ®)

similar to the known equation of Karman for the isotropie turbulence in the sense of
Taylor, Herein £ denotes the mean dissipation of energy in the unit of time per unit
of mass, The equation {3) may be rewritten in the form

(%+%) (ﬁudf—:“—ﬂm) = 4k, (4)
and, in virtue of the condition (d/dr) B, (0} = B0} = 0, yields
6rdBy,/dr— B, = tEr. (a)
For small # we have, as is known,
Bua ~ Er% v, (6)
i.e. tirdB,, /dr ~ 1Br,

Thus, the second term on the left-hand side of {5) is for small » infinitesimal in
comparison with the first. For large r, on the conteary, the first term may be
neglected in comparison with the second, i.e. we may assume that

Byaq ~ —3Er. (7}
It iz natural to assume that for large r the ratio
S = Bygq: Bhy, (8)

# First published in Russian in Doll. Akad. Nauk SSSE (19413, 32(1). Paper received 30 April 1841, This
translation by V. Levin, reprinted here with emendations by the editors of this volume.

Proc, B, Sop, Lond, A (1O01) 434, 15-17
Printed in Greal Britain 15




Other derivations of the Kolmogorov spectrum

L. Onsager (1945)

ﬁl W. Heisenberg (1945)

C. von Weizsacker (1945)

Early remarks to Kolmogorov's theory

| ' L. D. Landau (1941)




T he dissemination of Kolmogorov theory

G. K. Batchelor (1947)

Kolmogorov's theory of locally

isotropic turbulence
Proc. Camb. Phil. Soc. 43 533 (1947)
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A closer look to Kolmogorov's
phenomenology

Large
scales

log{energy)

Viscous
scales

log{scale)
Energy flux e = &§8 ~ o ~ (U3/L) ~ (6;u)3/r
Viscous dissipation v

3\ 1/4
Kolmogorov scale n = (%) /

1/374/3
Reynolds number Re = YL ~ <2L7  (£)4/3
17 1% ’I’]

Number of active degrees of freedom N = (%)3 ~ Re%/%

1/3
Taylor vs Kolmogorov scales % ~ % /3 Rel/

Taylor microscale Reynolds number Rey ~ Rel/?



Experimental verification of the Kolmogorov
spectrum

Turbulence spectra from a tidal channel

Tk

@ LK) Egv )

1y *

T ik 1
kn

Grant H.L., Stewart R.W., and Moilliet A. (1962)



Extensions of Kolmogorov's theory

Passive scalar turbulence

A. M. Obukhov (1949)

A. Yaglom (1949)

S. Corrsin (1951)




In between Navier-Stokes and Kolmogorov
(1950-1970)

DIA, LHDIA, TEM, LET, EDQNM, and the like

R. H. Kraichnan

J. Herring

S. Orszag

. and Wyld, Edwards, Mc Comb etc. etc.



A first glimpse at intermittency

((TZy4y

il
shas Vs Re
((3z7)°)
The nature of turbulent motion al large wave-nuwmbers 249

very unusual shapes to give values of the flattening factor near 49 and 59. On the
simple assumption that "u/@z" is zero for a fraction 1~y of the total time and
varies with a Gaussian probability distribution during the remainder of the time,
flattening factors 3-0, 3-9, 49 and 59 (for » = 0, 1, 2 and 3 respectively) correspond
to y = 1:0, 0-77, 0-61 and 0-51 respectively. Since high orders of the velocity
derivative are associated with very large wave-numbers, the results of figure 5
suggest that there is present an effoct which becomes inereasingly important as the
wave-number is increased.

)]

H { .

"

FreurE 5. Flattening factors of velocity derivatives.

Tsotropic turbulence, KBy : e, 2810; 4, 5620; =, 11,200; &, 22,600,
Cylinder wake, R,: A, 680; 7, 4,100,

G. K. Batchelor A. A. Townsend
Proc. Roy. Soc. Lond. A bf 199, 238 (1949)



Intermittency in full glory

small scales

large scales

((6ru)2)t/2



Kolmogorov-Obukhov theory of intermittency (1962)

Fluctuations of the energy dissipation rate

The Refined Similarity Hypothesis
(Marseille 1961)

57"’11, ~ (err)l/:g

Volume-averaged dissipation £ = 1= [s vIVul?2dV

Moments of velocity differences
((Sru)™) ~ (e7/3)rn/3
For n = 3: (er)y =€
For n # 3: (eM3) £ /3

If the distribution of ¢, is very broad, then (sf/3> > €3 for n > 3

A
E(x) ‘ ‘| PE)

X

larger r

smaller r

E E
The width of the distribution of ¢, increases with decreasing r



The log-normal assumption

. (In &‘r—mr)Q

2
P(lne,) = —L ¢ 207
( T) \V 2moy,
where m, = (Ine,) = In(e) — %

and o, = ((Ing,;)?) — (Ing,)2 = A+ pIn(L/r)

<€7?}/3> = [es"=P(Iney)dIne,
n(n—3)
= Ap(e)?/3 (£)" T8

r

Scaling exponents

n(n—3)

((5r)") ~ (023 o i

e@e+m)~ (£)

Ou\ 2 ~ 2 n
(292 (e) n
p: the intermittency exponent

(395 & (L)M ~ ReH/4

u = 0.25+0.05
Sreenivasan and Kailasnath, Phys. Fluids A 5 512 (1993).



Multiplicative models of the turbulent cascade

i Novikov
Stewart
h (1964)

Yaglom
(1966)

NS64
At each step of the cascade, the dissipation is
randomly partitioned over M cubes out of N

At scale r/L = N~*/P we have

() = b ()" (30" = (e)7(&)3G-DA-teas )

Y66
At each step of the cascade, the dissipation is a
random fraction of dissipation at the upper scale
Ep = WEER_1, With wy i.i.d. r. v. (of unit mean)

(e) = eb(w)t = (e)7 (£)>°0"



Fractals ...

SwfifEEdl =
_RERE

Probability of finding a black point in a box of size r = 27F:
k
P=(2) = r = pDP—Dr D=1

k 4 _
P=(3)" = rlo%5 = pD-Dr Dp =2—log5 ~ 1.585

and multifractals




The multifractal model of intermittency

For inertial-range separations the Navier-Stokes
equations admit the rescaling

Tr — AT u — \Nu t — ANt

oru = u(x 4+ %) —u(x — %) ~ r" for all points = € S,
where S, is a set of dimension D(h)

(Bru)™) ~ [ reD=DB) g . 0Tl D=D)

D(h) =3 for h=1/3 and D(h) =0 elsewhere : K41

D) =3~ |2 (h-17-3(h-1) +14] : KO62



The advent of Direct Numerical Simulations

VoLumE 28, NUMEER 2 PHYSICAL REVIEW LETTERS 10 Jawuary 1972

Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence

Steven A, Orszag*
Depuriment of Mathemeotics, Massachysefts nsiitale of Tecknology, Camlridpe, Massuchisells 02138

awd

(G, 8, Pattergon, Jr.§
Depavtment of Enginceving, Swaythmore College, Swarthmore, Pennsylvonic T9081
(Received ¢ December 1971)

This Letter reports mumerical simulations of three=dimensional homogenoous isotyo=

pla turbulence at wind-turnel Reymolda mumbers, The resulta of the simulations are eom-
pared with the predietions of the dircet=-inkorsction turbulenee theory.

Fast Fourier Transforms and Pseudo-spectral methods

i(k,t) = —ikp(Sar—kaky) Y _ p(p,t)i, (k—p,t)—vk*u(k,t)
p

Convolutions cost (N3)? operations !

Since Y, ip(p, t) iy (k — p, t) = gty (k, 1)
use FFT forth and back: cost of FFT N3log N

In 1971 643 points (Rey ~ 35) on NCAR CDC6600
computer took 30 sec/step

In 2003 10243 points (Rey ~ 300) on CINECA IBM
SP-Power4 take 90 sec/step



Turbulence in flatland
vorticity w =V x u
Ow—+u-Vw=w- -Vu+rAw

For planar flows
w = (0,0,w(x,y,t))

u — (Um(x, y7 t)? uy(a:‘7 y7 t)7 O)
Ow—+u-Vw=rvAw

Two inviscid invariants:
energy E = [ |u|?de = [ E(k)dk
enstrophy Z = [w?de = [ k?E(k)dk

The double cascade

-5/3

‘ -~
Y
~ enstrophy
~ flux

log(E(k))

energy
flux

log(k)

R. Kraichnan, Phys. Fluids 10, 1417 (1967)



Phenomenological arguments

E(k) ~e?/3k%/3  for k< ky

E(k) ~¢?Pk=3  for k> ky

Exact relations

(6r)%) = Zer

<5ru(5rw)2) = —2(r

Is there intermittency in the inverse cascade 7

And in the direct cascade 7



Experiments

]
Soap
Solution

Soap
Solution
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Passive scalar turbulence

9,0 +u- V0 =rA0+ f
((6r0)") ~ rOn

1 1
B

./.

P 4

-

<% yeloc
&

= 9

temperature

Strong intermittency
of passive scalar

Ramps and cliffs



The Kraichnan model
00 +u-VO0=rA0+ f

u Gaussian, statistically stationary, homogeneous,
isotropic

(uy =0

(wi(e, yuj(@4r, 1)) = { Dodij — 57 [(d — 1 + &)y — &7 } 6(t — 1)

f Gaussian, statistically stationary, homogeneous,
isotropic

(f)y=20

(f(z,t) f(x+7,t")) = F(r/Lg)
Closed p.d.e.'s for scalar correlations
Cn(x1,...,2n) = (0(x1,t) - - 0(xn0, 1))
atcn + Mncn =FQ Cn—2

o 8
oz, 8:13b

M, = ZS(wa — @)

a<b



The theory of passive scalar intermittency

From correlations to structure functions

((6,:0)*) =
C(0,0,0,0) — 4C(r,0,0,0) + 6C(r,r,0,0) — 4C(r,r,r,0) + C(@r,r,r,r)

A dead end road 7

MnCn =F® Cn—2

[M,] = lengthé2 = [C,] = length™(12)

Anomalous scaling and homogeneous solutions

Cn — Cflnhom + Cgom MnCTfLLom —

e Scaling exponents can be computed from first principles
(in some limiting cases)

e Universality of scaling exponents

e EXxtension to realistic velocity fields via the Lagrangian inter-
pretation

Gawedzki and A. Kupiainen, Phys. Rev. Lett. 75, 3834 (1995)
M. Chertkov et al Phys. Rev. E 52, 4924 (1995)
B.I. Shraiman and E.D. Siggia, C. R. A. S. II 321, 279 (1995)
O. Gat and R. Zeitak, Phys. Rev. E 57, 5511 (1998)
D. Bernard et al, J. Stat. Phys. 90, 519 (1998)
A. C. and M. Vergassola, Phys. Rev. Lett. 86, 424 (2001)
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