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Alfvén waves propagation in an X
point magnetic configuration

S. Landi (1), M. Velli (1) and G. Einaudi (2)

The dynamics of the development of extremely small scales in magnetic field is crucial to understand
the heating and the energetic manifestations of the high temperature plasma of the solar corona. Here we
illustrate what could be an essential aspect of the cascade of magnetic energy to small scales via
numerical simulations of the propagation of (shear) Alfvén waves in a magnetic field with an X-point
geometry in 2.5 D. The coupling of the waves with the background field leads to the development of fast
mode shocks whose number depends on the Alfvén wave frequency. Though the X-point is essential to
shock wave formation, dissipation occurs within the shocks which sweep the whole plasma volume. The
shocks might also play an important role in modifying particle acceleration around the X-point.

(1) Università di Firenze, (2) Università di Pisa
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Introduction
MHD waves can play an important role in the heating of the solar corona, a primary role if they are the agent
by the which the photospheric energy is transmitted into the corona or a secondary role if they are one of the
channel into which energy is brought by other heating mechanism.

In this work we address the question on how energy associated with these waves may dissipate once it is in
the corona.

Given the smallness of the Reynolds number in the solar corona,              , the only way of dissipating is to
create small scale structures. Given the lack of homogeneity of the coronal magnetic field small scales can
be created by the linear and non linear interaction between the waves and the magnetic field (Einaudi and

Velli, 1994).

Rη = 1011

In this poster we present the study of the propagation of Alfvén waves in a potential magnetic field
configuration with X-points for large and small values of the plasma β.

The main result is that the coupling of shear Alfvén waves with the X-point magnetic configuration
leads to the formation of fast shocks. Fast shocks are able to dissipate independently of the Reynolds
number and, given their motion, the dissipation is not focalized around the X-point but occurs in the
whole volume.
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The numerical model

We make use of resistive and viscous MHD for a compressible fluid.

In the numerical resolution we assume that one coordinate (say z) can be ignored

We consider a rectangular box of dimension Lx = Ly = 2π.

Along the y direction we assume periodicity; the spatial integration is performed by spectral
methods.

In the x direction no assumption is made about periodicity. The spatial integration is
performed by the use of compact difference schemes (Lele, 1992).
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The initial conditions are chosen with structurally stable magnetic field
configuration (Bulanov et al., 1999).
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The drawback of periodicity is that it is impossible to treat an isolated X-point.

We make us of a current free magnetic field configuration:

Fig.1 Field lines of the structurally stable magnetic
configuration chosen as initial condition in our simulations.

The magnitude of the constant field is chosen so
that the three components have similar rms:

B Bx y0 0 0 01= = . B z0 0 5= .



5

In the x direction boundary conditions are assigned via projected characteristic of the MHD equations
allowing us essentially perfect non reflecting boundary conditions and full control over the type of
fluctuations input into the numerical domain (Roe and Balsara, 1996).

We introduce Alfvén waves from both the boundaries in x = 0 and
x = 2π. We have chosen to force inward only in over the central
half of the domain, i.e. over only one X-point.
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The maximum amplitude α of the Alfvén waves is chosen to
be comparable to that of the equilibrium magnetic field so that
linear and nonlinear coupling with the X-point are also
comparable.

Fig.2 Spatial (top) and temporal (bottom) profiles
of the Alfvén waves introduced at the boundaries
in x = 0 and x = 2π, via the projected
characteristic method.
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High β simulations

Fig.3 Current density intensities for different values of the frequency ω of the input Alfvén
wave.

ω = 1 0. ω = 1 5. ω = 2 0.y

x

In this set of simulation we have adopted an uniform temperature T0 = 0.75; β varies between 2/3 at the
boundaries and 6 near the X-point.

Once the stationary regime has been reached on average, several current sheet appear in the domain depending
on the frequency ω of the input Alfvén wave.

These current sheet appear to extend along the x direction and propagate along the y direction in a quasi one-
dimensional fashion.
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These current sheets are consequence of fast magnetoacustic
shock waves propagating along the y direction.

Fig.4 For the ω = 1 simulation, from top to bottom: z-
component magnetic fluctuations, density fluctuations
and y-directed fluid velocity as a function of y in x =
π. The arrows mark the direction of propagation of
the two shock waves.

We note the positive correlation between the z component of the
magnetic field and the density fluctuations. The plasma is
compressed crossing the discontinuity.

These waves are propagating with a velocity corresponding to the
fast magnetoacustic mode.

In the shock front reference frame, the fluid velocity is superfast
before the shock.

The Rankine-Hugoniot jump conditions for an isothermal gas are
verified.
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When shock waves are fully developed the ohmic dissipation
rate become independent of the Reynolds number.

Simulations have been performed with different Reynolds
number, i.e. R η = 200 and Rη = 500. For the higher Reynolds
number the resolution is Nx = Ny = 256 (128 for R η = 200 ).

We can then found a relationship between the width l of the current sheet
and the Reynolds number:

Taking into account the different resolution adopted this means that the
number of point needed to resolve the discontinuity must scale as 4/5.
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Fig 5. We compare the ohmic dissipation rate as function of time for
ω = 1 simulations which differ in the Reynolds number.

Fig 6. Comparison of the width l of the current sheet
for 2 simulations which differs in the Reynolds
number and resolution.
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The simulations has been performed also varying the
amplitude of the injected Alfvén wave at the boundaries.

The dissipation rate show that the time when a stationary
condition occurs depends on the amplitude. This means that
only when a sufficient amount of energy is converted in fast
mode shocks the energy equilibrium is reach.

The formation time, i.e. the time needed to reach a
stationary regime, show an inverse square root dependency
on the amplitude of the Alfvén wave:

It is not clear the reason of such a dependence.The intensity
of the dissipation scales as:

τ αs = 3 2/

τ αs = 1 2/

Fig. 7 Ohmic dissipation rate for simulations performed with
different values of the amplitude α  of the Alfv én wave pumped at
the boundaries. The diamonds mark when a stationary condition has
been reach.

Fig. 8 We plot the formation time τs as function of α showing that
the best fit is an inverse square root dependence on α. The α ∝ τs

has been drawn as reference.



10

The low β simulations

We have adopted an uniform temperature one order of magnitude smaller then the previous
case. With such a condition β varies from 0.15 at the boundaries up to 0.3 near the X-point.

These values are typical for an active-region corona with density              and Alfvén
velocity of                   .

1010 cm-3

300 Km s-1

ω = 0 5. ω = 1 0. ω = 1 5. ω = 2 0.

x

y

Fig.9 Current density intensities for different values of the frequency ω of the injected Alfvén waves at the
boundaries, for the low β  simulations.
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As seen in the high β simulations, the appearance and the number of the current sheets depend on the
frequency of the Alfvénic pump. In this case, however, their propagation yields an increasingly intricate
pattern as they intersect and fragment and dissipate.

This more intricate structure can be explained recalling that, for a low β plasma, the fast magnetoacustic
mode depends strongly on the magnetic field which varies of about a factor 2  in the whole domain.

ω = 0 5. ω = 1 5.

Fig.10 We compare the current dissipation obtained with different Reynolds number when the
Alfvén wave frequency is  ω=1.5 (on top) and ω=0.5(bottom panel). When shock waves are
generated, the dissipation is almost insensitive of the Reynolds number.

As in the simulations with β>1
previously shown, once the shock waves
formation is obtained, the current
dissipation in the whole domain is
almost insensitive of the resistivity. This
is clearly shown in Fig.10, where we
compare the dependence of the
dissipation on the Reynolds number
when current sheets are  formed (ω=0.5)
or not (ω=1.5).
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Conclusion

• We have presented simulations of the propagation and mode conversion of large amplitude Alfvén
waves into fast mode shocks in equilibrium magnetic field with X-points.

• Dissipation via shock waves does not depend on the Reynolds number as this tend to infinity and
therefore the whole problem related to the time scale of dissipation in the question of coronal heating is
by-passed in this process.

• Though the X-point is essential to shock wave formation, dissipation occurs within the shocks which
sweep the whole plasma.

• The presence of intricate patterns of shock waves could result in strong acceleration of particle
(Vlahos, 1994).

• This simulations should be viewed as a preliminary result. One question is the extent to which our
periodic boundary conditions are important in the generation of the waves.

• Another important question concern the more realistic case of a time-chaotic driver. It is important to
know if this process survive or if the interaction between different fast mode waves created by the
chaotic Alfvénic pump, become destructive.
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