Turbulence, heating and particle acceleration

Éric Buchlin

Space and Atmospheric Physics Department, The Blackett Laboratory, Imperial College, London

6^{th} RHESSI Workshop, Meudon, 05 April 2006

Personal interests

Disclaimer: (almost) no RHESSI and particle acceleration experience

Personal interests

Disclaimer: (almost) no RHESSI and particle acceleration experience

Then what am I doing here???

Personal interests

Disclaimer: (almost) no RHESSI and particle acceleration experience

Then what am I doing here???

Some of my interests that may be related to RHESSI:

- Small-scale coronal heatings, and their statistics
- MHD turbulence in the corona

Small-scale heating of the corona

Need small scales for:

- theoretical reasons: dissipation is more efficient
- observational reasons: observed events (> 100 km) not sufficient

Small-scale structures are visible

X/UV bright points: small loops? Counterparts of RHESSI microflares

Even smaller structures can be expected

Possible origin of small scales

May be created by *turbulence*

In the corona: $R_e = UL/\eta \approx 10^{13} \gg 1$ (for U = 1 Mm/s, L = 10 Mm, $\eta = 1$ m²/s)

Smallest scales (dissipative): 10–100 m!

Need for statistics to describe coronal heating

Why do we need statistics? (vs. morphology)

- Small structures/events/flares/scales:
 - Not seen directly, but the observable statistics may be preserved when going to smaller scales
 - Deductions based on statistics (Hudson 1991...)
- Statistical nature of description of turbulence: powerful means to tackle its *complexity*

 \longrightarrow direct *comparison* between *observations* and *simulations* is possible

Introduction Small-scale heating Statistics of heating Turbuler Observations Numerical simulations

X/UV observational statistics (non-RHESSI)

 Energies, durations... of *events* (nanoflares) distributed as *power laws* Parnell & Jupp 2000 (TRACE), Aletti *et al.* 2000 (SOHO/EIT),

Aschwanden et al. 2000, Buchlin, Vial and Lemaire, A&A 2006 (SOHO/SUMER)

► Waiting times between successive events distributed as power laws → Poisson process, Lepreti, Carbone & Veltri 2001 (GOES)

E. Buchlin

RHESSI statistics: distributions of energies of microflares

E. Buchlin

Observational difficulties

In any case:

- Need to extract events from data (RHESSI time series, UV images) or data cubes), and results may depend on the definition of an event that was used (Buchlin et al. A&A 2005)
- Need to get total event energy from observed variables, and results
 - Would comparing observable variables (and forward-modelling) be
 - How to conclude on this "magical" -2 slope anyway?

Observational difficulties

In any case:

- Need to extract events from data (RHESSI time series, UV images or data cubes), and results may *depend on the definition of an event* that was used (Buchlin *et al.* A&A 2005)
- Need to get total event energy from observed variables, and results may depend on the assumptions made (Parnell SOHO15, 2004)
 - Would comparing observable variables (and forward-modelling) be preferable?
 - How to conclude on this "magical" -2 slope anyway?

Observational difficulties

In any case:

- Need to extract events from data (RHESSI time series, UV images) or data cubes), and results may depend on the definition of an event that was used (Buchlin et al. A&A 2005)
- Need to get total event energy from observed variables, and results may depend on the assumptions made (Parnell SOHO15, 2004)
 - Would comparing observable variables (and forward-modelling) be preferable?
 - How to conclude on this "magical" -2 slope anyway?

Numerical simulations: shell-models

Need of long time series for statistics: direct numerical simulations are not suitable \longrightarrow we use MHD shell-models to simulate a loop

Numerical simulations: dissipation in shell-models

MHD turbulence at very large Reynolds numbers (10⁴–10⁶) \longrightarrow smaller scales than in DNS

A heating function is obtained, and a time series of energy dissipation.

Statistics from shell-model numerical simulations

How to relate this to acceleration of particles?

Energy release at small scales \longrightarrow MHD not valid anymore, super-Dreicer fields... (gray zone for the heating model! difficulties of cross-scale physics)

With some assumptions it would be possible to deduce distributions of accelerated particles and RHESSI spectra (Cyril?)

How to relate this to acceleration of particles?

Energy release at small scales \longrightarrow MHD not valid anymore, super-Dreicer fields... (gray zone for the heating model! difficulties of cross-scale physics)

With some assumptions it would be possible to deduce distributions of accelerated particles and RHESSI spectra (Cyril?)

Coronal turbulence: observations and simulations

- Power-law spectra, turbulence Martens & Gomez 1992, Benz et al. 1997 (Yohkoh/SXT), Berghmans et al. 1998 (SOHO/EIT), Espagnet et al. 1993 (ground), BVL06 (SUMER)
- Intermittency of this turbulence Patsourakos & Vial 2002 (SOHO/SUMER), Abramenko et al. 2002–2005 (MDI), BVL06 (SUMER)

Acceleration in a turbulent field

Take a 3D snapshot of fields of MHD turbulence

PARTICLE ACCELERATION IN STRESSED CORONAL MAGNETIC FIELDS R. Turkmani,¹ L. Vlahos,² K. Galsgaard,³ P. J. Cargill,¹ and H. Isliker²

(ApJL 2005)

(see also M. Onofri,

or reconstruct the fields from a shell-model: see Lepreti et al. 2005),

and accelerate *test particles* in it.

- Fast and efficient acceleration
- Distributions of particle energies

What can we tell from the comparison with observed distribution

E. Buchlin

Acceleration in a turbulent field

Take a 3D snapshot of fields of MHD turbulence

PARTICLE ACCELERATION IN STRESSED CORONAL MAGNETIC FIELDS R. Turkmani,¹ L. Vlahos,² K. Galsgaard,³ P. J. Cargill,¹ and H. Isliker²

(see also M. Onofri,

or reconstruct the fields from a shell-model: see Lepreti *et al.* 2005), and accelerate *test particles* in it.

- Fast and efficient acceleration
- Distributions of particle energies

(ApJL 2005)

Turkmani 2005

What can we tell from the comparison with observed distribution

E. Buchlin

Acceleration in a turbulent field

Take a 3D snapshot of fields of MHD turbulence

PARTICLE ACCELERATION IN STRESSED CORONAL MAGNETIC FIELDS R. Turkmani,¹ L. Vlahos,² K. Galsgaard,³ P. J. Cargill,¹ and H. Isliker²

(see also M. Onofri,

or reconstruct the fields from a shell-model: see Lepreti *et al.* 2005), and accelerate *test particles* in it.

- Fast and efficient acceleration
- Distributions of particle energies

(ApJL 2005)

What can we tell from the comparison with observed distribution?

E. Buchlin

Role of intermittency in particle acceleration

PROPAGATION OF ENERGETIC CHARGED PARTICLES IN THE SOLAR WIND: EFFECTS OF INTERMITTENCY IN THE MEDIUM

E. KH. KAGHASHVILI, G. P. ZANK, AND G. M. WEBB

Intermittency considered as being non-uniform scattering time (?) \longrightarrow fine structures and non-stationarity of particle distribution in space

PARTICLE ACCELERATION AND INTERMITTENT TURBULENCE IN CORONAL LOOPS

N. Décamp¹ and F. Malara¹

(ApJL 2006)

(ApJ 2006)

Simple *p*-model to have only intermittency as a parameter → Intermittency makes acceleration more effient

Role of intermittency in particle acceleration

PROPAGATION OF ENERGETIC CHARGED PARTICLES IN THE SOLAR WIND: EFFECTS OF INTERMITTENCY IN THE MEDIUM

E. KH. KAGHASHVILI, G. P. ZANK, AND G. M. WEBB

Intermittency considered as being non-uniform scattering time (?) \longrightarrow fine structures and non-stationarity of particle distribution in space

PARTICLE ACCELERATION AND INTERMITTENT TURBULENCE IN CORONAL LOOPS

N. Décamp¹ and F. Malara¹

(ApJL 2006)

(ApJ 2006)

Simple *p*-model to have only intermittency as a parameter \longrightarrow Intermittency makes acceleration more effient

Discussion

Let's discuss some possible links and possible mechanisms between heating and acceleration.

Need more definitive conclusions on:

- importance of characteristics of turbulence on acceleration
- their observable signatures (which could be seen by RHESSI)

Discussion

Let's discuss some possible links and possible mechanisms between heating and acceleration.

Need more definitive conclusions on:

- importance of characteristics of turbulence on acceleration
- their observable signatures (which could be seen by RHESSI)