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Personal interests

Disclaimer: (almost) no RHESSI and particle acceleration experience

Then what am I doing here???

Some of my interests that may be related to RHESSI:

I Small-scale coronal heatings, and their statistics

I MHD turbulence in the corona
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Small-scale heating of the corona

Need small scales for:

I theoretical reasons:
dissipation is more efficient

I observational reasons: observed
events (> 100 km) not sufficient

Small-scale structures are visible

X/UV bright points: small loops?
Counterparts of RHESSI microflares

Even smaller structures can be
expected
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Possible origin of small scales

Photospheric
granulation

Scales of
dissipation

E(k)

kdiss k
injk

Injection

Dissipation

Energy cascade

Inertial range

May be created by turbulence

In the corona:
Re = UL/η ≈ 1013 � 1
(for U = 1 Mm/s, L = 10 Mm,

η = 1 m2/s)

Smallest scales (dissipative):
10–100 m!
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Need for statistics to describe coronal heating

Why do we need statistics? (vs. morphology)

I Small structures/events/flares/scales:

Not seen directly, but the observable statistics may be preserved when
going to smaller scales
Deductions based on statistics (Hudson 1991...)

I Statistical nature of description of turbulence: powerful means to
tackle its complexity

−→ direct comparison between observations and simulations is possible
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X/UV observational statistics (non-RHESSI)

I Energies, durations... of events (nanoflares) distributed
as power laws
Parnell & Jupp 2000 (TRACE), Aletti et al. 2000 (SOHO/EIT),

Aschwanden et al. 2000, Buchlin, Vial and Lemaire, A&A 2006 (SOHO/SUMER)
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I Waiting times between successive events distributed as power laws
−→ Poisson process, Lepreti, Carbone & Veltri 2001 (GOES)
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RHESSI statistics: distributions of energies of microflares
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Observational difficulties

In any case:

I Need to extract events from data (RHESSI time series, UV images
or data cubes), and results may depend on the definition of an event
that was used (Buchlin et al. A&A 2005)

I Need to get total event energy from observed variables, and results
may depend on the assumptions made (Parnell SOHO15, 2004)

Would comparing observable variables (and forward-modelling) be
preferable?
How to conclude on this “magical” −2 slope anyway?
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Numerical simulations: shell-models

Need of long time series for statistics: direct numerical simulations are
not suitable −→ we use MHD shell-models to simulate a loop
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Numerical simulations: dissipation in shell-models

MHD turbulence at very large Reynolds numbers (104–106) −→ smaller
scales than in DNS

A heating function is obtained, and a time series of energy dissipation.

E. Buchlin Turbulence, heating and acceleration



Introduction Small-scale heating Statistics of heating Turbulence DiscussionObservations Numerical simulations

Statistics from shell-model numerical simulations

Distributions of events energies, durations, waiting times:
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How to relate this to acceleration of particles?

Energy release at small scales −→ MHD not valid anymore,
super-Dreicer fields... (gray zone for the heating model! difficulties of
cross-scale physics)

With some assumptions it would be possible to deduce distributions of
accelerated particles and RHESSI spectra (Cyril?)
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Coronal turbulence: observations and simulations

I Power-law spectra, turbulence
Martens & Gomez 1992,
Benz et al. 1997 (Yohkoh/SXT),
Berghmans et al. 1998 (SOHO/EIT),
Espagnet et al. 1993 (ground),

BVL06 (SUMER)

I Intermittency of this turbulence
Patsourakos & Vial 2002 (SOHO/SUMER),
Abramenko et al. 2002–2005 (MDI),

BVL06 (SUMER)

also in time series of the shell-model:
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Acceleration in a turbulent field

Take a 3D snapshot of fields of MHD turbulence

(ApJL 2005)
(see also M. Onofri,
or reconstruct the fields from a shell-model: see Lepreti et al. 2005),
and accelerate test particles in it.

I Fast and efficient
acceleration

I Distributions of particle
energies
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What can we tell from the comparison with observed distribution?
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Role of intermittency in particle acceleration

(ApJ 2006)
Intermittency considered as being non-uniform scattering time (?)
−→ fine structures and non-stationarity of particle distribution in space

(ApJL 2006)

Simple p-model to have only
intermittency as a parameter
−→ Intermittency makes
acceleration more effient
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Discussion

Let’s discuss some possible links and possible mechanisms between
heating and acceleration.

Need more definitive conclusions on:

I importance of characteristics of turbulence on acceleration

I their observable signatures (which could be seen by RHESSI)
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