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„Test“ particles
• Do not interact with each other
• Do not feed back to the plasma
Natural applications:

• Rare species (He, O, ...)
• Collisionless high-energy tails
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2. Coarse-grained forces from 
local densities + currents 

1. Collisions

2 CLASSES OF FORCES:



Coulomb Collisions
• Dynamics: d2r/dt = kr/|r|3

• Scale r by α, and t by β: 
→ αβ-2 d2r/dt2 = - α-2 kr/|r|3

→ unchanged if α3=β2 (Kepler).
• Since v ~ (α/β),

v2 α = const. for similar orbits.
• Now, σ ~ α and thus  σ2 ~ v-4

• Thus the collision rate
ν ~ n σ2 v ~ nv-3      decreases with v!

σ2



Basic Techniques for Test Particles
Population:                   
(more difficult)

Single particle: 
(easy)  

{∂t+ ∂xA(x) - ∂x
2B(x)} f(x,t) = 0

Stochastic differential 
equations (SDE):
dX = a(X)dt + b(X)dW

{∂t + ∂xF(x)} f(x,t) = 0
Ordinary differential 
equations (ODE):
dX = F(X)dt

Wiener process
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Numerical Sample paths:

Wiener Process (Brownian motion)

Wn+1 = Wn + ∆t1/2η
where η is standard normal

〈W2〉 = tAverage:



In the limit ∆t → 0, W(t) is continuous but 
nowhere differentiable:

So what does the stochastic „differential“
equation dX = a(X)dt + b(X)dW really mean?



Stratonovich: at (X-+X+)/2

Stochastic Interpretation
At which X should 
b(X) be evaluated?dX  =  a(X) dt  +  b(X) dW

Itô: at X-

Example: dX = X dt + X dW
(leapfrog; same W as before)

Milshtein (1974), to order dt (=dW2):
do begin
dW = sqrt(dt)*randomn(seed)
x = x + a(x)*dt + b(x)*dW + b(x)*db_dx(x)*dW^2/2 ...... Strat.
x = x + a(x)*dt + b(x)*dW + b(x)*db_dx(x)*(dW^2-dt)/2 .. Ito
t = t + dt
end do



Itô and Stratonovich have the same diffusion 
but different drifts. The difference is not just 
cosmetic:

Classical physics (continuous 
sample paths, red noise 
approximated by white noise) 
usually leads to Stratonovich.

∂tf = −∂x a f + ½ ∂x ∂x b b f
∂tf = −∂x a f + ½ ∂x b ∂x b f
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D → Fokker-Planck Equations
• Space science applications: 

- Cosmic rays (Parker, Jokipii, Schlickeiser, ...)
- Particle acceleration in solar flares and in the 
solar wind (Miller, Petrosian, Park, Karimabadi, Le 
Roux, ...): diffusion in momentum space to higher 
and higher energies. Different wave modes 
(constraints on Sij(k)) used for different particles.

• However, Fokker-Planck equations do not capture 
all features of the deterministic motion!

• Crude example: dX/dt = F(X) ± f(X). A change of 
sign does not affect D ~ 〈f f〉, and has thus no effect 
if 〈f〉 = 0.



More subtle ...

projector along v



... Now ,



2D case: discrete flip about v

d2x/dt2 = −∇Φ(x) d2x/dt2 = −R(v)∇Φ(x)^



3D case: continuous rotation by ψ

Displacement Velocity

Remember, all ψ have the same 
formal velocity diffusion coefficients!

Trapping 

at Φmax



Thus, 
There is need to resolve the full non-linear 

orbit dynamics!

• ODE solvers: Forward-Euler, Leapfrog, Runge-
Kutta Cash-Karp, Boris, symplectic, various 
gyrokinetic forms, etc. ...

• Benchmarking:
- Check convergence as dt → 0
- Systematic approach: enforce symmetry and 

check the corresponding invariant!



Construction of Turbulent Fields

Direct numerical
simulations:

Gaussian (random-
phase) proxies

|B|

|B|



Random-phase (Gauss field) proxies
• Let the fluctuations be collected in z = (u, b, ρ, ...)
• Statistically homogeneous random-phase field: 

z(x,t) = Σkω ζ(k,ω) cos{x.k − ωt + ψ(k,ω)}   

• Sij(k) must respect the underlying physics,
Sbb(k,ω).k = 0      (∇.b = 0),

and should account for the linearized dynamics (∂t z = Λz):
Sij(k,ω)    = 0   unless   det |iω - Λ(k)| = 0
Sij(k,ω).ξ = 0   unless       (iω - Λ(k))ξ = 0.

• Example 1: linearly polarized Alfvén waves: z = (u,b),          
ω = B0.k, and ξ ∝ (k x B0, k x B0).

• Example 2: linear force-free perturbations: k2 = α2.
• Sij(k) should agree with observations.

uniform in [0,2π]Gaussian with zero mean and covariance Sij(k)



Observational constraints
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Numerical experiments: non-gaussian PDF‘s (Sorriso-Valvo et al. 1999, 
2000) and structure functions (Politano et al. 1998).

Matthaeus et al. (2005): magnetic 
single-time two-point functions of the 
solar wind, using multi-spacecraft 
observations (WIND, ACE, Cluster).

Hnat et al. (2003): distributions of 
X(t+τ)-X(t) with X = |B|, |v|, B2, v2, 
ρv2 (WIND data); scales with τ -α .



Effect of coherent MHD structures

Arzner et al., 2006

DNS STO
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Diagnostics: Radiation into vacuum
from a general orbit x(t)

|E(ω)|2 = ∫ 〈v┴(0).v┴(τ) eiωτ - ik.x(τ)〉 dτ

... Inj this way,  the particle two-point functon 
maps onto the power spectral density of the 
observed electromagnetic modes.



Summary
Turbulence

Gauss-Field Proxies

Test Particle Diffusion 
Coefficients

SDE‘s Fokker-Planck

† Intermittency,  
dynamic 
alignment

† Exact particle 
dynamics, 
conservation 
laws

Choose   
Stochastic 
Interpretation
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