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,l1est” particles

Do not interact with each other
* Do not feed back to the plasma

Natural applications:
* Rare species (He, O, ...)
* Collisionless high-energy tails

2 CLASSES OF FORCES:
2. Coarse-grained forces from

— local densities + currents
L a3

R \ m
1. Collisioir =




Coulomb Collisions

Dynamics: d4r/dt = kr/|r|3
Scale r by a, and t by f:
— of2dr/dt? = - a2 kr/|r|?
— unchanged if a3=p32 (Kepler).
Since v ~ (a/PB),
vZ2 oo = const. for similar orbits.

Now, ¢ ~ o and thus | o2 ~ v

Thus the collision rate

v~nao?v~nv3 | decreases with v!




Basic Techniques for Test Particles

Single particle: Population:
(easy) (more difficult)

Ordinary differential
equations (ODE): {0, + 0, F(x)} f(x,t) =0
dX = F(X)dt

Stochastic differential
equations (SDE): {07+ 0,A(X) - 6,2B(x)} f(x,t) = 0
dX = a(X)dt + b(X)dW

Wiener process




Wiener Process (Brownian motion)

Numerical Sample paths: RISRERTRINES

where n is standard normal
Average: BUGEE




In the limit At — 0, W(t) is continuous but
nowhere differentiable:

0.000 0.001 0.002 0.003
t

So what does the stochastic ,differential”
equation dX = a(X)dt + b(X)dW really mean?




Stochastic Interpretation

At which X should
b = e en 5 lapd) el b(X) be evaluated?

i d
Ito: at X Stratonovich: at (X +X)/2

Example: dX =X dt + X dW

(leapfrog; same W as before) - Xi = XimA + Xioq (Wi=Wioq)
- X = Xioi M 4 Xz 2(Wi=Wisg)

Milshtein (1974), to order dt (=dW?):

do begin

dW = sgrt(dt)*randomn(seed)
X + a(xX)*dt + b(X)*dW + b(x)*db_dx(x)*dWw”2/2 ]
X + a(xX)*dt + b(X)*dW + b(x)*db_dx(x)*(dWwr2-dt)/2 .. lto
t + dt

end do




1t6 and Stratonovich have the same diffusion
but different drifts. The difference is not just
cosmetic: ~ Stratonovich

dX = X dt + X dW ___ SDE, 105 samples
] Fokker—Planck
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Classical physics (continuous
sample paths, red noise

approximated by white noise)
usually leads to Stratonovich.




e Assume X = F(x)+f(x), where F(x) is smooth compared to f(x). of which
we know f(x)) = 0 and {(f(x;) f(x>2)) = C(x> — X).

e Then, we may take x(0) = 0 and argue that

(xX(1)X(t2)) = f dt F(x(1)) dr F(x(7)) + f :rf dr’ (E(xX(O))E(X(F)))

ir F(X(7)) dr F(X()) + f rvfdr EX(NHEX()))
0

X(7)X(12) + min(zy, rz}fdr C(X(r))

i_D

where X(7) is the unperturbed orbit satisfying X = F(X). It was assumed

that X(7;) — X(#,) = X(#; — 1») over the correlation length of f, and that
C(X(7)) decays rapidly. Thus. — requires suitable coordinates

e the field correlation C is mapped on a particle diffusion coefficient D.

e D and F are related to the (Stratonovich) SDE dx = a dr+b dW according
toa = F and D = b”b. The latter decomposition is not unique in d > 2.



D — Fokker-Planck Equations

« Space science applications:

- Cosmic rays (Parker, Jokipii, Schlickeiser, ...)

- Particle acceleration in solar flares and in the
solar wind (Miller, Petrosian, Park, Karimabadi, Le
Roux, ...): diffusion iIn momentum space to higher

and higher enerqgies. Different wave modes
(constraints on S;(k)) used for different particles.

 However, Fokker-Planck equations do not capture
all features of the deterministic motion!

* Crude example: dX/dt = F(X) £ f(X). A change of
sign does not affect D ~ (f f), and has thus no effect

if (F) = 0.




More subtle ...

e Consider %{x, v) =(v,F)with F = -VO{(x)
o If d(x) 1s a centered Gauss field, the mixed correlations (v;F ;) vanish.
e [f d(x) is 1sotropic, the velocity diffusion coefficient 1s
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Recall that D;; = <I1;(¥)

If F = =V is replaced by F* = RF, then the new diffision coefficient
becomes

D*=RDR".

Now, D* = Dif RTR = 1 and [R, [1(¥)] = 0, i.e. if R is a rotation about V.

So we may modify Newton’s force by rotating it around the actual velocity
without changing the velocity diffusion coefficient if ®(x) 1s isotropic.

Although the energy |v|?/2 + @ is still conserved, the orbits behave very
differently!




2D case: discrete flip about v

d2x/dt2 = —R(v)V®D(x)




3D case: continuous rotation by v

t = 692 Iv,!
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Displacement Velocity

Remember, all y have the same
formal velocity diffusion coefficients!




There is need to resolve the full non-linear
orbit dynamics!

ODE solvers: Forward-Euler, Leapfrog, Runge-
Kutta Cash-Karp, Boris, symplectic, various
gyrokinetic forms, etc. ...

* Benchmarking:
- Check convergence as dt — 0

- Systematic approach: enforce symmetry and
check the corresponding invariant!




Construction of Turbulent Fields

Direct numerical
simulations:




Random-phase (Gauss field) proxies

 Let the fluctuations be collected in z = (u, b, p, ...)
« Statistically homogeneous random-phase field:
z(x,t) = Z,, C(k,0) cos{x.k — ot + y(k,»)}

Gaussian with zero mean and covariance S;(k) uniform in [0,2n]
i(K) must respect the underlying physics,
Si(k,w)k=0 (V.b=0),
and should account for the linearized dynamics (0,z = Az):
Sij(k,o) =0 unless det]io-A(k)[=0
Si(k,).§ =0 unless (io - A(k))§ = 0.

Example 1: linearly polarized Alfvén waves: z = (u,b),
o = By.k, and ¢ « (k x By, k x B)).

Example 2: linear force-free perturbations: k? = o2.
Si(k) should agree with observations.




Observational constraints

Matthaeus et al. (2005): magnetic
single-time two-point functions of the
solar wind, using multi-spacecraft
observations (WIND, ACE, Cluster).
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FIG. 3. Constrained exponential fit to ACE-Wind and Cluster
set (2) data. This provides an estimate of A, = 193K.

Hnat et al. (2003): distributions of
X(t+1)-X(t) with X = |B|, |v|, B?, V2,
pv? (WIND data); scales with T *¢ .

Numerical experiments: non-gaussian PDF's (Sorriso-Valvo et al. 1999,
2000) and structure functions (Politano et al. 1998).




Effect of coherent MHD structures
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Diagnostics: Radiation into vacuum
from a general orbit x(t)

[E(w)]? = ] (va(0).vi(r) el -kx() dv

... Inj this way, the particle two-point functon
maps onto the power spectral density of the
observed electromagnetic modes.




Summary

Test Particle

Gauss-Field Proxies

Test Particle Diffusion
Coefficients

m Fokker-Planck
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T Intermittency,
dynamic
alignment

T Exact particle
dynamics,
conservation
laws

Choose
Stochastic
Interpretation




