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Theoutline

»Observational evidences of p and e presence
» Current sheet topology with a guiding magnetic field
»Theparticle motion analysisin a 3D current sheet

» Case1l—-Bzvariable; case 2, Bz and Bx variable

»Electron and proton energy spectra from an RCS
with a constant density

»E and p energy spectra from an model RCS with
varying density and transver sal magnetic field
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The evidences of accelerated particlesin flares

= Electrons (well established — see talk by Fletcher):
Bremsstrahlung hard X-ray emission;
gyro-synchrotron MW-emission
etc.

" Protons. ?-ray Nuclear linesin some flares (Share et a, 2002-5).
Implicit evidences non-therma UV-lines
broadening and Ha impact polarisation
(Antonucci et al, 1984; Henoux, Chambe et al, 1990)

Hard bremsstrahlung X-ray (>20KeV) can be partly produced
by proton-energized electrons (Smnett & Haines, 1990).
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The mechanisms of particle acceleration

= Acceleration by electric field inside the reconnecting current sheet
(in upper corona)
-Semi-analytical solutions of motion equation for particles in non-neutral CS
(Spieser, 1965; Litvinenko, 1996; Litvinenko & Somov, 1993, 1995; Zhu and Parks,
1993;  Tsuneta, 1995).
-The numerical simulation of particles acceleration in 2D current sheet (VIahos, 1989;
Martens & Young, 1990) and 3D current sheet Zharkova & Gordovskyy, 2004, 2005;
Woods & Neukirch, 2005; Dalla and Browning, 2005 ).
=Acceleration by propagating plasma waves
(in lower atmospheric levels)
- Thermal electron acceleration by MHD-waves
(Park and Petrosian, 1995; Pryadko & Petrosian, 1997)
- Proton and electron acceleration by fast modes of MHD- waves (e.g. Decker and
Vlahos, 1986; Miller et al, 1996)

»Acceleration by MHD-shocks

(see e.g. Decker and Vlahos, 1986; Cargill et al., 1988; Anastasiadis and Vlahos,1991)
RHESSI Workshop, Paris, Apr '06 4



Observed asymmetry of the footpoint brightness

> A spatial asymmetry between X-ray images of footpoints. The
brighter X-ray source is often observed in the footpoint with
weaker magnetic field (Nitta et al., 1990; Sakao, 1994; Sakao et
al, 1994).

» A spatial asymmetry in MW images of the two separate
footpoints was also observed in many flares. Unlike X-rays, the
brighter MW footpoint corresponds to higher magnetic field
(Kundu et al., 1995, Masuda et al., 1996).

» This effect was interpreted as aresult of the different magnetic
field convergence in different loop legs. The higher isthe

convergence the stronger is magnetic mirroring.
RHESSI Workshop, Paris, Apr '06 5



Thetemporal and spectral asymmetry in different footpoints

> In many flares, in addition to the brightness asymmetry, there
IS a spectral asymmetry in MW range: one footpoint has a power-
law energy spectra while the other has the thermal one (e.g.
Takakura et al, 1995).

»|n some flares there is atemporal delay in MW and gamma-ray
emission appearing in different footpoints (so called ‘ prolonged
emission’ appearing either prior or after the main phase (see e.g.
Aschwanden, 1996; Aurass et al., 1999; Akimov et al., 1999,
Shareet al., 2003)

» These two types of asymmetry can not be interpreted by a
different magnetic convergence in the flaring loops.
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Time delays in g-ray line
emission can be as small
as <2 sec to as large as
10's of sec.

g-ray line emission in
2002 July 23 flare may
be delayed by ~10 sec
from hard X-rays.

What does this say
about acceleration-
transport? Could be
accounted for by
Trapping or is it infrinsic
to the acceleration
process?

RHESSI Workshop, Paris, Apr '06
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*Hence, the energy spectra and temporal asymmetry between
footpoints can be caused by the magnetic field topological
effects governing particle acceleration in the current sheet

3

Thisisthe motivation to investigate proton and electron
motions inside a 3D current sheet
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Y=-RAY AND NEUTRON
PRODUCTION IN SOLAR FLARES

Ch{}mﬂspere

reaction
products

Y

e, p, 2He, o, C N, O, ..

alectrons:

X- and Y-ray bremsstrahlung

excited nuclei — Y-ray line radiation (1-8 MeV

escape to space
neutrons — { )
capture on H — 2.223 MeV line

radioactive nuclei —e* — 1,

T — ¢ (decay, e™ bremsstrahlung, 7.,,)
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Accepted current sneet scheme —case 1 (B,=B,=const)
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Accepted par ameters of the particle motion: electrons
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Accepted parameters of particle motion: protons
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The motion eguation of charged particlesin the eectric and
magnetic fields:

r®) =g/m(EQ)+[r@® B(r)])
The method of calculations

O The particle-in-cell approach was used (10° particles)

U The second order of accuracy Runge-Kutta method (predictor-corrector
scheme)

U A time step for each sort of particlesis much smaller than the
correspondent gyro-period

dt<<m/q|B [}
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General analysis of the particle motion: trajectories
Zharkova & Gorodvskyy, ApJ 2004

> Electric field isthe force that governs a straightforward movement of
accelerated particles along the Y-axis, so for a particle with the charge g the Y -
component will have avelocity V,,

V,»qg/mE,t
» Obeying the X-component of magnetic field, by Lorenz force, particleis
rotated through the angle of ~90° before being gected with:

V, »g/mV,B,t =g°/m?E, B, t?
» The particle velocity V, occurring owing to a gyration is defined by the Y -

component of magnetic field and the Z-component of a particle velocity as
follows:

V,»ag/mV,B,t» g m3E, B, Bt?

» Hence, V, ispositivefor electronsand negative for protons, if B,>0, and
viceversa if B, < 0. RHESS| Workshop, Paris, Apr '06 16



Proton trajectory (ApJ 2004
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Electron trajectories (ApJ 2004
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Analysis of the particle motion: acceleration time and path
(Speiser, 1965, Martens and Y oung, 1990)
» Assuming that the particle is accelerated during about a
period of its gyration around perpendicular component of
magnetic field the acceleration time can be estimated as
follows:

t=2pm/gB,*t (9

» Then the acceleration path (here y,-y;,;) can be estimated
as

p=2p>m/qE, B,? (m)

RHESSI Workshop, Paris, Apr '06 20



Analysis of particle motion: energies

(Speiser, 1965, MY 90)

» Assuming that acceleration time and path to follow the formula
above, the energy of accelerated particle can be estimated as;

e=p42m/qEz? B,*

» Estimations of acceleration time and energy at gection for
protons and electrons are summarised in the table;

t,s e, eV
p* 6.3 104 5104
e 35107 ~102

RHESSI Workshop, Paris, Apr '06 21



The suggested scheme of proton/electron acceleration and precipitation

Pure electron beams,
compensated by return
_gurrent, precipitatein 1s

| . \\\‘A /. Proton beam

/ N ‘\\ compensated
t ¥\ Y N by proton-ener gised
-“electrons precipitate

l‘l XA 77 about 10s

\ »

P ------;;l,[/////
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Magnetlcfleldtopology Case 2, By =const

(Zharkova& Gordovskyy,
MNRAS, 2005)
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Table 2 Companson of the acceleration times, energies and velocities found from the esti-

mations and simulations

Accel. time Energy Ve
astimated simulation formula (1)  simulation

RC5 thickness d = 10 m
protons 6.3x 101 1071 -10 Bx 1 1x 17 4.5 x 1P
electrons 35 x 1077 107 - 10 ~ 102 Ix10t Tx 1

RCS thickness d = 100 m
protons 6.3x 10" 107 -1071 5x 10 2x10° 8.2 x1(f
electrons 35 x 1077 107 - 10 ~ 102 Hx 100 ax10°

Zharkova and Gordovskyy, ApJ 2004

RHESSI Workshop, Paris, Apr '06 24



Electron/proton motion in an RCS

e=100eV
e=10keV

e= 100 eV
e=10eV

Zh& G, MNRAS, 2005

B=104T
Gyroradius (m) Gyroperiod (S
0.33/14 3.6 x 10°/6.5 x 102

3.3/1.4 x 102 3.6 x 10-5/6.5 x 102
B=102T
Gyroradius (m) Gyroperiod (S)

3.3x103/0.14 3.6 x 107/6.5 x 104
3.3x10%/1.4 3.6 x107/6.5 % 10-4

RHESSI Workshop, Paris, Apr '06
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Particletrajectories—case Z (e~ b, “~Z9)
blue — RCS edge, green — close to X-point
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Particle velocity spectra at g ection
protons (blue) and electrons (brown) Zh& G,

MNRAS, 2005
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Particle energy spectra from an RCS

with density varialions zh& G, MNRAS, 2005
dN(2)/dz

d gBx(2), By, Ey]/dz
For a constant density:

dN/de~A el5  protons
dN/de~B e%%  gectrons
et us consider the RCS density

N=N, (z/a)- exp(-Lz/a)
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(MHD simulations by Oreshina and Somov, 20
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chNer gy Specti a b,—bolda) (L—1).

e (blue) and p (black)

upper panel —neutral, middle — semi-neutral,
lower —fully separated beams
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Case 3: Role of the transversal component B,=B, (z/a)2
for L=1: - Zh& G, Space SciRev, 2006
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Role of the transversal component

(L=1):B,=B, (z/a)2 - electrons
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20 Fharkova & Gordovskyy

Table I1. The spectral indices v of proton
beams calculated for different exponential
indices o and A of the B: and density
variations with =

BN
e o 12 1 2 3
0.5 2 2.5 3 4 5
1 1.5 1.75 2 2.5 3
2 1.25 1.38 1.5 1.75 2
3 117 1.25 1.33 1.5 1.67

Table IT1I1I. The spectral indices v of elec-
tron beams calculated for differemt esc—
ponential indices o« and A of the B, and
density variations with =.

M
o o 172 1 2 3
0.5 =3 4 5 re 9>
h = 2.5 3 = 5
2 1.5 1.T5 2 2.5 3
3 1.33 1.5 1.67T 2 2.33
1 1+ X -4
= =f(1 — Ty = I Pl d
v =3 ( + ) 7 27)

The electron spectral indices ¥y calculated for various o and X are
presented in Table TIT.

The resulting spectral index for electrons is directly proportional to
A {(the dengity index) and reversely proportional to o {(the B, index)
for a weak guiding field and to the doubled o« for the strong field.
In general, the spectral indices -y for electron and proton beams are
strongly increased with the increase of the index A of density variations
in a vicinity of the X-nullpoint. The increase of the index o leads to a
decrease of the resulting spectral index ¥ if ex > 1 and an increase of -y
iF QO < ex < 1.

wisor_Trev_wB.tex; 15/712/,2005; 18:06; p.=20



Electron spectral indices G
dependenceon a and L

Electrons
G= 1+ L /(2 a) —strong guiding field (3 > 10?)

G= 14(1+ L /a) — weak guiding field (R< 10°2)

Protons

G=1+L /(2a)—any guiding field

RHESSI Workshop, Paris, Apr '06



Conclusions

@ Electrons and protons accelerated in a non-neutral RCS with weak
longitudinal and transversal components of magnetic field are ejected
separately into different halves from Bx=0 depending on the By sign.
@ Particles can be accelerated to very high energies (MeVs for electrons,
GeV for protons).
@ Particles leave a model RCS with power law energy spectra with the
indices
@ G=1+L /(2a) (protons and electrons in strong guiding field)
@ G=%(1+ L /a) (electrons in moderate and weak GF).

@ Indices can vary from 1.2 to 9 for some combinations of L and a

@The indices and lower energy cutoffs are dependent on the electric and
magnetic field components and can be increased by 2-4 for another
models.

@ This opens new perspectives for magnetic field diagnostics in solar

flares and geomagnetic tail from hard X-ray and G-ray spectral indices
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