The AGN-star formation connection

David M Alexander (Durham)

Overview of this talk

Focus on AGN-SF connection of distant X-ray AGNs (bulk of BH and galaxy growth)

Kalfountzou talk on AGN-SF connection for radio-loud AGN

Motivation for studying AGN-SF connection

Broad connection from AGN and SF cosmic histories

Factor ~1500x offset between BH accretion and SFR cosmic histories in broad agreement with M_{BH} - M_{sph} relationship

Relic evidence from M_{BH}-M_{sph} relationship

(e.g., Magorrian et al. 1998, Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002; Marconi & Hunt 2003; Haring & Rix 2004; Gultekin et al. 2009; Shankar et al. 2016)

Why this seems crazy: huge difference in size scales

Black-hole-galaxy: ~10⁹ difference in size scale (grape-Earth) Radius of influence of the black hole: $<10^{-3}$ that of the galaxy

This suggests some sort of regulation between AGN activity and star formation

Regulation: outflow - the AGN as the driver/boss

T = 160 Myr

The winds/outflows from the AGN could provide an "arm" for the black hole to orchestrate kpcscale star formation

(e.g., Di Matteo et al. 2005; Granato et al. 2004; Hopkins et al. 2006; Lapi et al. 2014)

Regulation: inflow - the galaxy as the driver/boss

Regulated gas inflow?

Can be challenging to distinguish between all these scenarios due to uncertain gas inflow/outflow timescales Star-formation regulated growth?

(i.e., driven by same gas supply)

Measuring star-formation rates in the far-IR waveband

Measuring star-formation rates: far-IR emission

Effect of AGN on star-formation rate measurements

Key message: AGN contaminate/increase average SFR over 250um photometry by >2 for luminous/dominant AGN – can be higher for individual sources and shorter wavelengths

The AGN-SF connection of X-ray AGNs

SF in distant AGNs tracks SF galaxies - on average

Mullaney et al. (2012)

Also Lutz et al. (2010), Mullaney et al. (2010); Shao et al. (2010); Rosario et al. (2012, 2015); Harrison et al. (2012); Santini et al. (2012)

ALMA reveals similar SF extent in FIR bright AGN

High resolution (~1-3 kpc) ALMA 870um data of some z>1.5 X-ray AGNs and star-forming galaxies (SMGs)

No clear differences in galaxy wide SF environment – SF extent and surface density for X-ray AGNs comparable to SF galaxies. **Caution:** only a few FIR-bright AGN observed.

What about the L_{SF} - L_{AGN} relationship?

Early Herschel results of mean L_{SF} for L_{AGN} bins showed a large amount of diversity

Now clear the mean L_{SF} - L_{AGN} relationship is flat

Mean L_{SF} for L_{AGN} bins for X-ray AGN: remarkably flat relationship

At first this seemed an absurd result – how can a flat $L_{SF}-L_{AGN}$ relationship be consistent with the $M_{BH}-M_{sph}$ relationship?

Key to understanding this: changes in accretion rate

AGNs likely vary on short timescales when compared to and star formation – so the observed L_{AGN} can vary substantially for a (relatively) constant L_{SF}

A fluorescent bulb at 1000 frames per second

Mullaney et al. (2012); Hickox et al. (2014)

SF: comparatively constant with time AGN: more variable with time

Expectations from simple accretion variability model

Mean L_{SF} for L_{AGN} bins for X-ray AGN

So when take account of mass, redshift, and AGN variability all X-ray AGN reside in SF galaxies – right?

No this is only for the <u>mean</u> SFR – need to calculate a more refined quantity: SFR distributions, which requires deeper data

Using ALMA to constrain the SFR distribution

Few X-ray AGN detected by ALMA but upper limits valuable: updated SFRs place them below typical starforming galaxies

Mullaney et al. (2015); Scholtz et al. (in prep); Stanley et al. (in prep)

Minority: detected

ALMA shows not all X-ray AGN reside in SF galaxies

Mullaney et al. (2015); Scholtz et al. (in prep); Stanley et al. (in prep) Key message: a **typical** X-ray AGN does not appear to reside in a SF galaxy

Interpretation? AGN suppressing SF (gas outflows)? Or delays in gas inflow from galaxy/star formation?

We are starting to distinguish using (1) ALMA data for factor ~3 more X-ray AGN and (2) VLT-KMOS IFU data to connect gas outflows to SFR constraints

See Bongiorno talk for complementary constraints

Key messages from this talk

Measuring accurate SFRs in AGN can be challenging, particularly when AGN:SF ratio is high

Most critical for high-luminosity or low-z AGN (where SF low)

<u>Mean</u> SFRs for X-ray AGN consistent with typical SF galaxies Need to take into account redshift, mass, and AGN variability

But tentative differences found in the <u>distribution</u> of SFRs – many X-ray AGN reside in more quiescent galaxies

However, it is unclear what is the driver – regulation from AGN gas outflows or galaxy/SF gas inflow timescale to get to BH?

...and now for something a (bit) different

X-SERVS: New X-ray survey of the LSST/DES Deep-Drilling Fields

X-SERVS Fields

Expected Source Yields

Ultimate aim: 14 deg² solid-angle coverage in total – factor of ~ 7 improvement over COSMOS alone (4.5 deg² allocated so far). Reduces cosmic variance and allows robust studies of large-scale structures.

Observations: can be done with XMM-Newton and/or Chandra – aiming for 50 ks XMM-Newton depth, so that we sample the AGN populations producing the bulk of cosmic accretion power.

Overall: expect 11,000 AGNs and 760 X-ray groups/clusters. Contact: me or email niel@astro.psu.edu

Primary Science Goals for X-SERVS

SMBH growth across the full range of cosmic environments from voids to massive clusters.

Links between SMBH accretion and star formation.

Improved measurements of the $z \sim 4-7$ AGN space density.

Constraints upon z > 10 direct-collapse black holes via X-ray/NIR cross correlation.

Rare and luminous sources – e.g., luminous type 2 quasars, extreme X-ray/optical sources, intrinsically X-ray weak AGNs, SMBH pairs, X-ray bright but radio-faint jets.

Cosmology with clusters and groups.

Incredible Legacy Value: Likely the Best Multiwavelength Fields for Decades

Fantastic Current/Scheduled X-SERVS Multiwavelength Coverage

Coverage of an AGN Spectral Energy Distribution

, , , , , , , , , , , , , , , , , , , ,		
Band	Survey Name	Coverage (W-CDF-S, ELAIS-S1, XMM-LSS); Notes
Radio	Australia Telescope Large Area Survey (ATLAS) ^a MIGHTEE Survey (Scheduled) ^b	3.7, 2.7, $-\deg^2;$ 15 $\mu\rm{Jy}$ rms depth at 1.4 GHz 4.5, 3, 4.5 $\deg^2;$ 1 $\mu\rm{Jy}$ rms depth at 1.4 GHz
FTR	$\mathit{Herschel}$ Multi-tiered Extragal. Survey $(\mathbf{HerMES})^c$	0.6–18 $\mathrm{deg^2};$ 5–60 mJy depth at 100–500 $\mu\mathrm{m}$
MIR	Spitzer Wide-area IR Extragal. Survey $(\mathbf{SWIRE})^d$	8.2, 7.0, 9.4 $\rm deg^2;$ 0.04–30 mJy depth at 3.6–160 μm
NIR	Spitzer Extragal. Rep. Vol. Survey (SERVS)* VISTA Deep Extragal. Obs. Survey (VIDEO) ^f	4.5, 3, 4.5 deg ² ; 2 μ Jy depth at 3.6 and 4.5 μ m 4.5, 3, 4.5 deg ² ; $ZYJHK_s$ to $m_{AB} \approx 23.5$ -25.7
Optical Photometry	Dark Energy Surwy (DES) ⁴ Hyper Suprime-Cam (HSC) Deep Survey ¹⁶ Pan-STARRS1 Medium-Deep Survey (PS1MD) ¹ VST Optical Imaging of CDF-S and ES1 (VO1CE) ¹ SWIRE optical Imaging ⁴ LSST deep-drilling field (Planned) ^k	9, 6, 9 deg ² ; Multi-epoch griz, $m_{AB} \approx 27$ co-added $\neg, \neg, 5.3 deg2; grizy to m_{AB} \approx 25.3–27.58, \neg, 8 deg2; Multi-epoch grizy, m_{AB} \approx 26 co-added4.5, 3, - deg2; Multi-epoch ugri, m_{AB} \approx 26 co-added7, 6, 8 deg2; u'g'r'r'i' to m_{AB} \approx 24–2610, 10, 10 deg2; ugrizy, 20000 visits total$
Optical/NIR Spectroscopy	Carnegie-Spitzer-IMACS Survey (CSI) ¹ PRIam MUlti-object Survey (PRIMUS) ^m VLT MOONS Survey (Scheduled) ⁿ	4.8, 3.6, 6.9 deg ² ; 140.000 redshifts, 3.6 μ m selected 2.0, 0.9, 2.9 deg ² ; 77.000 redshifts to $i_{AB} \approx 23.5$ 4.5, 3, 4.5 deg ² ; 210.000 redshifts to $H_{AB} \approx 23.5$
UV	GALEX Deep Imaging Survey ^a	7, 7, 8 deg^2 ; Depth $m_{AB} \approx 25$

References: [a] Hales et al. (2014); [b] http://public.ska.ac.ss/meerkat/meerkat-large-survey-projects; [c] Oliver et al. (2012); [d] Lonzdale et al. (2003); [e] Manduit et al. (2012); [f] Jarvis et al. (2013); [g] Diehl et al. (2014); [b] http://www.macj.org/Freglects/ BEC/surveyplan.html; [i] Tonry et al. (2012); [f] http://www.matisrsccari.met/vsice/; [k] http://www.iset.org/Freglects/ deep-drilling-201202.html; [i] Kelson et al. (2014); Patel et al. (2015); [m] Coil et al. (2011); [n] http://www.res.ac.sk/~cirma/ BECBU/UT-ECOM5.html; [o] http://www.res.ac.sk/~cirma/ BECBU/UT-ECOM5.html; [o] http://www.res.ac.sk/~cirma/

