

Calibrating Cluster

Masses

Eduardo Rozo U. of Arizona

Mykonos, Greece June 2016

In collaboration with

- Peter Melchior Daniel Gruen Thomas McClintock Erin Sheldon Tamas Varga DES Collaboration
- Melanie Simet Thomas McClintock Rachel Mandelbaum
- Eric Baxter Bhuvnesh Jain
- Eli Rykoff
- Risa Wechsler

Cluster Cosmology in 3 Easy Steps

1. Find all galaxy clusters.

- 2. Measure cluster masses.
- 3. Learn about gravity and dark energy!

Cluster Cosmology in 3 Easy Steps

1. Find all galaxy clusters.

 rely on photometrically identified galaxy clusters (redMaPPer)

- two distinct data sets: SDSS and DES.

Rogue's Gallery

z=0.87 "El Gordo"

z=0.53 SCSO J2336-5352

z=0.76 DES J0449-5909

DES Collaboration, Eli Rykoff

z=0.83 DES J0250+0008

Rogue's Gallery

z=0.30 Bullet Cluster

er = SCSO J2351-5452

z=0.40

z=0.53 SCSO J2336-5352

z=0.76 DES J0449-5909

DES Collaboration, Eli Rykoff

z=0.83 DES J0250+0008

z=0.87

"El Gordo"

Cluster Cosmology in 3 Easy Steps

1. Find all galaxy clusters.

2. Measure cluster masses.

- This is the thing that limits the precision of cluster cosmology!

- Want P(Mass|Observable)
- Focus primarily on DES analysis.

(Brief Aside)

Relation between mass and observable (X) is statistical.

 $M(X) = AX^{\alpha}$

This notation is ambiguous! Does it mean this?

 $\langle M \mid X \rangle = AX^{\alpha}$

Or this?

 $\langle \ln M | X \rangle = \ln A + \alpha \ln X$

These two are not equivalent Offsets relevant at ≈1σ.

The Impact of Mass Calibration

Planck 2015 XXIV

Why Mass Calibration Matters

Weak Lensing Mass Calibration

The gravity of a galaxy cluster bends the light of galaxies behind it.

Source

Weak Lensing Mass Calibration

We can detect *shear* statistically:

The mean tangential ellipticity of *background* galaxies around galaxy clusters depends on the cluster mass.

Mass Calibration of DES SV Clusters

Melchior et al., in prep., plot by Tom McClintock

Mass Calibration of DES SV Clusters

Melchior et al., in prep., plot by Tom McClintock

The Mass-Richness Relation in DES SV

Melchior et al., in prep., plot by Tom McClintock

Mass Calibration of SDSS Clusters

End Result

DES SV: (UPDATE AFTER UNBLINDING) $\log_{10} \langle M | \lambda \rangle = (14.X \pm X \pm X) + (1.X_{-X}^{+X}) \log_{10} \left(\frac{\lambda}{30}\right)$ Note- units are M_☉, z_{pivot}=0.6

SDSS: $\log_{10} \langle M \mid \lambda \rangle = (14.344 \pm 0.021 \pm 0.023) + (1.33^{+0.09}_{-0.10}) \log_{10} (\frac{\lambda}{40})$ Note- units are $h^{-1} M_{\odot}$, $z_{pivot} = 0.25$

Comparison of DES and SDSS

Melchior et al., in prep.

Systematics (The Monster in the Dark)

w.bubblewrap.com

U Produces Protect You Part

End Result

DES SV: (UPDATE AFTER UNBLINDING) $\log_{10} \langle M | \lambda \rangle = (14.X \pm X \pm X) + (1.X_{-X}^{+X}) \log_{10} \left(\frac{\lambda}{30}\right)$ Note- units are M_☉, z_{pivot}=0.6

SDSS: $\log_{10} \langle M \mid \lambda \rangle = (14.344 \pm 0.021 \pm 0.023) + (1.33^{+0.09}_{-0.10}) \log_{10} (\frac{\lambda}{40})$ Note- units are $h^{-1} M_{\odot}$, $z_{pivot} = 0.25$

Current List of Systematics

- Shape systematics (4%)
- Photoz systematics (3%)
- Triaxiality (2.0%)
- Projections (2.0%)
- Modeling Systematics (2.0%)
- Membership dilution. (1% or less)
- Cluster centering. (1% or less)

Systematics are essentially identical for DES and SDSS.

Why Shape Systematics Matter

Biased shear = biased mass m = multiplicative shear bias

Why Shape Systematics Exist

Images from talk by Thomas Kitching: www.nesc.ac.uk/talks/1003/16Kitching_lensing.pdf

Why Shape Systematics Exist

Solution: Simulate!

Images from talk by Thomas Kitching: www.nesc.ac.uk/talks/1003/16Kitching_lensing.pdf

Shear Calibration

Residual systematics below 3% in simulations.

Jarvis et al. 2016.

Simulations are Not Perfect

Most important difficulty:

- Bias depends on detailed internal structure of galaxies.
- Differences between simulated and real galaxies results in shear biases.

Images from talk by Thomas Kitching: www.nesc.ac.uk/talks/1003/16Kitching_lensing.pdf

How to Test if the Simulation Calibration is Good Enough?

Use two different calibrated methods for measuring shear.

- Do they agree?

Residual Calibration Bias

This possible bias would was undetected by simulations!

Residual Calibration Bias

🛉 🛛 raw ratio

ratio w/ random points subtraction

Bottom Line:

1.4

- 5% top-hat uncertainty in *m*.
- Prior is gaussianized (3%, or 4% in the mass)
- Identified because we had two independent source catalogs

$$\theta$$
 (arcmin)

This possible bias would was undetected by simulations!

Why Photoz Systematics Matter

Source

Distortion will depend on distance. More distance = more distortion.

Distance is degenerate with mass!

How to Test?

Compare predictions of photozs to spectroscopic redshift distribution.

Problem: spectra don't exist!

Solution: use COSMOS 30-band photozs to test.

COSMOS Test

Bonnet et al. 2015

COSMOS Test

Radial structure and differences with other methods suggests COSMOS by itself is not a sufficient test.

Bonnet et al. 2015

How to Test?

Compare predictions of photozs to spectroscopic redshift distribution.

Problem: spectra don't exist!

Solution: use COSMOS 30-band photozs to test!

Solution:

- use multiple (a priori equally valid) methods.
- systematic error is mass range spanned by methods

Photoz Systematics

Systematics Require us to do Everything (at least) Twice

Two independent shape catalogs.

4 independent photoz catalogs.

Significant efforts have gone into characterizing the relative performance of each.

Equivalent Tests for SDSS

Simet et al. 2016

Equivalent Tests for SDSS

Plot by Alexie Leauthaud

Other Comparisons

redMaPPer—WtG

Mantz et al. 2016

Prospects for Improvement

- Shape systematics:
 - New estimators (e.g. Bernstein & Armstrong 2014).
- Photoz systematics:
 - Spectroscopic campaigns.
 - cross-correlation methods.

Alternative mass calibration methods!

Alternatives

• X-ray/SZ

- See following talk by Stefano Ettori.

- Cluster dynamics: (see talk by August Evrard)
 Statistical precision is better than 2% (!).
 - Large systematic uncertainty: velocity bias.
- CMB lensing:
 - See talk be Jean Baptiste Melin.
- Cluster clustering

Baxter et al. 2016.

Comparison of DES and SDSS

Melchior et al., in prep.

Alternatives

- Cluster clustering
 - Statistical precision = 7% in SDSS.
 - Systematics dominated: 18% uncertainty from the calibration of the bias—mass relation.

Expect we can reach statistical limit in the not too distance future.

Summary

- Mass calibration is currently systematics dominated.
- WL is currently our best tool for mass calibration:
 - Shape systematics
 - Photoz systematics
- Main take-away: we should estimate both shape and photozs in more than one way!
- Multiple alternate methods are likely to become competitive in the near future.
 - CMB lensing
 - Cluster clustering