A Distant Echo of Milky Way Central Activity closes the Galaxy's Baryon Census

F. Nicastro^{1,2}, F. Senatore^[1,3], Y. Krongold⁴, S. Mathur^[5,6], M. Elvis²

Nicastro (OAR-INAF) F. Senatore, Y. Krongold, M. Elvis, S. Mathur

Outline

- The Galaxy roaming baryon problem
- All the Milky Way gaseous components, as seen in X-rays
- The million degree gas against Low Galactic Latitude (LGL: XRBs) and High Galactic Latitude (HGL: AGNs) lines of sight:
 - Reconstructing the Galaxy's density profiles through OVII column densities + comparison with EM
- Three main results:
 - Two components: disk + halo
 - Presence of central cavity in the halo
 - Hot gas in the halo sufficient to close the Galaxy's baryon census

7/4/2016

The Galaxy Missing Baryons Problem

Cosmological Baryon Fraction $f_b = 0.157$

The baryon deficit is more severe in smaller galaxies

- → Less massive objects are unable to retain baryons (and metals?) due to feedback processes (winds)?
- →Are these baryons in the surrounding CGM/IGM?

The Milky Way's Baryon Problem

- $(M_b)^{Obs} = 6.5 \times 10^{10} M_{\odot}$ (McMillian & Binney, 2012)
- $M_{DM} = (1-2)x10^{12} M_{\odot}$ (Boylan-Kolchin+12)
- $f_b = 0.157$ (The Plank Collaboration, 2015)

 $M_{\rm b}^{\rm Missing} \approx (1.5-3) \times 10^{11} M_{\odot}$

All the X-ray Spectral Signatures of the Milky Way

Cts s⁻¹ Å

The Optimal OVII Sample

Differs from previous (e.g. Gupta+12, Miller&Bregman13):

- HGL + LGL for the first time
- Complete to SNRE>10 at 22 Å

18/20 (90%) LGL have OVII, but only 14 known distance (1 contaminated) 51 HGL; 9 contaminated + 3 Instr.Feat.; 34/39 (87%) have OVII, but only 18 K α & K β \rightarrow 13 LGL (XRBs) + 18 HGL (AGNs) = 31 LoS

Adopted Density Profiles $\xi(R) = LoS$ coordinate, with $R^2 = \xi^2 + R_0^2 - 2\xi R_0 cos(b) cos(l)$ $n(R) = n_0 e^{-|R-R_s|/R_c}$;(Exponential Sphere)

$$n(R) = n_0 e^{-\sqrt[n]{(\rho/\rho_c)^2 + (z-h_s)/h_c)^2}}; \quad \text{(Exponential Disk)}$$

$$n(R) = n_0 [1 + (R - R_s)^2 / R_c^2]^{-3\beta/2}; (\beta-Sphere)$$

 $n(R) = n_0 [1 + \rho^2 / \rho_c^2 + (z - h_s)^2 / h_c^2]^{-3\beta/2}$. (β-Cylinder)

 R_s and h_s = Offset Radius and Height

Separate LGL & HGL N_{OVII}-(*l*,*b*) Fits

Model	Model	n ₀	R_c or ρ_c	h _c	Rs	Halo Size	Mass	chi²(dof)
Name	Туре	(10 ⁻² cm ⁻³)	(kpc)	(kpc)	(kpc)	(kpc)	(10 $^9~{ m M}_{\odot}$	
HGL	Exp-SS	4 .9 ⁺ ^{1.1} _{0.4}	3.1 ^{+0.3}	N/ A	5.4 ^{+ 0.6}	> 46	3.3 ^{+ 4.1}	10.9(15)
LGL	Exp-CS	52 ^{+ 5} _{- 15}	2.4 ^{+ 0.3} _{- 0.1}	0.16 ^{+ 0.04}	N/ A	N/ A	0.14 ^{+ 0.11} - 0.06	12.8(10)

LGL: $\chi^2_{\text{flat}}(\text{dof}) = 12.8(10) \text{ vs } \chi^2_{\text{Sph}}(\text{dof}) = 22.5(11)$ LGL to HLG: $\chi^2(\text{dof}) = 373(18) !!!$ HGL to LGL: $\chi^2(\text{dof}) = 147(13) !!!$

LGLs trace the Galaxy's Disk: M_{OVII}(Disk)≈1.4x10⁸ M_☉
 2 distinct components or compromising solution

7/4/2016

Combined LGL+HGL N_{OVII}-(*l*,*b*) Fits

Model	Model	n ₀	R _c	β	Rs	Halo Size	Mass	chi ² (dof)
Name	Туре	(10 ⁻² cm ⁻³)	(kpc)		(kpc)	(kpc)	(10 ¹¹ M_{\odot}	
Α	β-SS	2.7 ^{+ 0.3}	2.1 ^{+0.3}	$0.62^{+0.04}_{-0.04}$	5.6 ^{+ 0.6}	> 64	0.2 ^{+ 0.3}	28.7(27)
В	M2 + β-SS	1.3 ^{+ 0.3}	0.7 ^{+ 0.2}	$0.33^{+0.03}_{0.03}$	6.7 ^{+ 0.9}	> 193	1.3 ^{+ 2.1}	30.9(27)
М3	M2 + β-SS	0.8 ⁺ ^{0.1} 0.1	1.7 ^{+ 0.2}	0.33 (frozen)	0 (frozen)	> 250	2.0 ^{+ 0.4}	34.9(29)
M4	β-SS	5.8 ^{+ 0.7}	2.5 ^{+ 0.2}	0.62 (frozen)	0 (frozen)	> 94	0.5 ^{+ 0.2}	45.6(29)

Model A: peak density at 6 kpc Model B: empty central 6-kpc sphere P(A;M4) = 99.8%; P(A;M3) = 91.3%

Why an Offset Radius?

OVII Emission Measure

• In 1-sr around $l=90^{\circ}$, $b=60^{\circ}$: EM = 0.0125 cm⁻⁶ pc (McCammon+02)

 $\operatorname{EM}(A;|b| \ge 60^{\circ}; 30^{\circ} < l < 150^{\circ}) = 0.013^{+0.022}_{-0.009} \text{ cm}^{-6} \text{ pc}$ $\operatorname{EM}(B;|b| \ge 60^{\circ}; 30^{\circ} < l < 150^{\circ}) = 0.005^{+0.012}_{-0.003} \text{ cm}^{-6} \text{ pc}.$

• Toward the Galactic Center at $|b| < 20^{\circ}$ and across the Fermi Bubbles: EM = (0.08-0.3) cm⁻⁶ pc (Kataoka+15)

$$\begin{split} &\mathrm{EM}(\mathbf{A}; |b| \le 20^{0}; 340^{0} < l < 20^{0}) = 0.4^{+0.1}_{-0.2} \ \mathrm{cm}^{-6} \ \mathrm{pc} \\ &\mathrm{EM}(\mathbf{B}; |b| \le 20^{0}; 340^{0} < l < 20^{0}) = 0.03^{+0.03}_{-0.01} \ \mathrm{cm}^{-6} \ \mathrm{pc} \end{split}$$

The 6-kpc Central "Cavity" (other pieces of evidence)

- Size and shape similar to "Fermi Bubbles" (gamma-rays) and Plank Haze (microwave): Dobler+10; Su+10
- Seen in H α and IR emission: Bland-Hawthorn+03
- Seen in modulation of X-ray EM across edges of Fermi Bubbles: Kataoka+15
- Resolved in moderate-ionization "double-peaked" (nearand far-side of the bubble) metal absorption suggesting expansion v≈1000 km/s: Fox+15

A Distant Echo of Central Activity

- A fast moving "piston" powered by a period of activity of our supermassive black hole moves outwards and compresses the ambient gas while pushing (a fraction of) it outwards (i.e. Davè+11; Faucher-Giguère & Quataert, 2012, Lapi+05)
- Nuclear energy-conserving outflows with $v_{in\approx} 10000$ km/s produce shock traveling at $v_s \approx 1000$ km/s (Faucher-Giguère & Quataert, 2012)
- At this rate it would take 6 Myrs for the OVII-traced shock to reach its current position at 6 kpc
- (6 ± 2) Myr is also the age of 2 stellar disks in the innermost 0.2 pc of the Milky Way, thought to be a relic of a gaseous accretion disk (Paumard+06; Levin, Beloborodov 03)

Checking the Energetic

- For a simple isothermal sphere $\Delta M/M \approx 1/2\Delta E/E$ (Lapi+05)
- $$\begin{split} \mathsf{M}_{\mathsf{Bubble}} &= 3.4^{+\,1.8}_{-\,1.3} \times \ 10^8 \ \mathsf{M}_{\odot} \clubsuit (\Delta \,\mathsf{M}/\,\mathsf{M}\,)_{\mathsf{Bubble}} \simeq 0.005 \ 0.05 \\ \Delta \,\mathsf{E}/\,\mathsf{E} \ \simeq \ 0.01 \ 0.1 \ \ \mathsf{E} \ \simeq \ 2 \times \ 10^{61} ((kT_{H\,\text{ot}})/\,\text{keV})^{5/2} \ \text{ergs} \end{split}$$
 - For $T_{Hot} \approx (0.6-1) \times 10^6 \text{ K} \Rightarrow E \approx (0.1-0.4) \times 10^{59} \text{ ergs}$
 - → $\Delta E \approx (0.1-4) \times 10^{57} \text{ ergs} = 1/2 \Delta M < v^2 >$

 $\Delta E << E_{AGN} (\Delta t = 4-8 \text{ Myr}) \approx (2.5-5) \times 10^{58} \text{ ergs}$

Closing the Galaxy's Baryon Census

Sizes: R(A)>61 kpc R(B)>190 kpc

Masses at R_{vir} : M(A)= $(0.2^{+0.3}_{-0.1})x10^{11} M_{\odot}$ M(A)= $(1.3^{+2.1}_{-0.7})x10^{11} M_{\odot}$

Actual Solution probably in between

Conclusions

- Million-degree Gas permeates both the Disk and Halo of our Galaxy
- A spherically symmetric structure in the density profile of the million-degree halo gas tracks the current position of a shock-front generated 6 Million years ago by an energetic outflow powered by an AGN-like accretion episode
- The Mass of the OVII-bearing Gas may be sufficient to close the Galaxy's Baryon Census