die Kunst

O Kandinsky

The ultimate XMM extragalactic survey

in der Wissenschaft

The XXL survey: The 100 brightest galaxy clusters

F. Pacaud

University of Bonn on behalf of the XXL collaboration

Main collaborators:

P. Giles, M. Lieu, C. Adami, N. Clerc, B. Maughan, M. Pierre, G. P. Smith

The XXL Survey

XMM survey based on a 2.9Ms VLP by M. Pierre (CEA/SAp)

- 2x25 deg² at high galactic latitude
- 10ks XMM exposure time (~6Ms in total)
- ~ 500 galaxy clusters and groups and 25000 AGNs

Rationale:

dark energy EoS with cluster counts and ξ (+ Planck CMB) ξ improves constraints on w₀/w_a by a factor 2 (Pierre, Pacaud et al. 2011)

Associated multi-λ projects

Equatorial field (L	SS) 25 deg ²	Southern field (BCS) 25 deg ²		
 CFHTLS, HSC 	optical	BCS, DEcam	optical	
– VISTA/VIDEO	NIR survey 4.5 deg ²	VISTA/VHS	NIR	
– UKIDSS	NIR 9 deg ²	Spitzer/SSDF	MIR	
– WIRCAM	shallow K survey	Herschel- <i>spire</i>	FIR	
 Spizter 	MIR		07	
– Herschel-spire	FIR 9 deg ²	ACT, SPTPOL	52	
 ACTpol deep 	SZ survey	ATCA	Radio (1.4GHz)	
– CARMA, AMIBA	SZ follow-up			

Optical spectroscopy

- ESO large program (VLT/FORS2 + NTT/EFOSC2) for cluster follow-up
- Anglo-Australian Telescope/2DF survey of X-ray sources in the south
- ♦ Access to spectra from the GAMA / VIPERS surveys
- \diamond Smaller individual proposals:
 - o William Herschel Telescope,
 - o Large Binocular Telescope, ...

More information on the XXL associated datasets wiki : http://lenssearch.pbworks.com

The XXL Survey: data quality

Exposure maps

Background maps

The XXL Survey: data quality

Exposure maps

Background maps

Zoom ~ 0.8 deg²

Comparison with RASS

XXL 1st result release

15 accepted papers (12 published today in an A&A special feature)

1 The XXL Survey

Pierre, Pacaud, et al.

- 3 Luminosity Temperature Relation Giles, Maughan, Pacaud et al.
- 5 Detection of the SZ effect at z=1.9 Mantz, Abdulla, Carlstrom, et al.
- 7 A Supercluster at z=0.43 Pompei, Adami, Eckert, et al.
- 9 Radio Analysis of the Supercluster

Baran, Smolcic, Milakovic, et al.

- 11 ATCA Continuum Observations Smolcic, Delhaize, Huynh, et al.
- 13 The Baryon Content of Clusters Eckert, Ettori, Coupon, et al.
- 15 BCG Growth in XXL Clusters Lavoie, Willis, Démoclès, et al.

- 2 The Bright Cluster Sample Pacaud, Clerc, Giles, et al.
- 4 The Mass-Temperature Relation Lieu, Smith, Giles et al.
- **6 The 1000 Brightest Point Sources** *Fotopoulou, Pacaud, Paltani, et al.*
- **3 Intracluster light in a z=0.53 Cluster** *Adami, Pompei, Sadibekova, et al.*
- 10 Mass-K band luminosity relation Ziparo, Smith, Mulroy, et al.
- 12 Frequency of AGNs in Superclusters Koulouridis, Poggianti, Altieri, et al.
- 14 AAOmega redshifts for XXL-S Lidman, Ardila, Owers, et al.

XXL 1st result release

The rest of the talk focuses on 4 papers

1 The XXL Survey

Pierre, Pacaud, et al.

- 3 Luminosity Temperature Relation Giles, Maughan, Pacaud et al.
- 5 Detection of the SZ effect at z=1.9 Mantz, Abdulla, Carlstrom, et al.
- 7 A Supercluster at z=0.43

Pompei, Adami, Eckert, et al.

- 9 Radio Analysis of the Supercluster Baran, Smolcic, Milakovic, et al.
- 11 ATCA Continuum Observations Smolcic, Delhaize, Huynh, et al.
- 13 The Baryon Content of Clusters Eckert, Ettori, Coupon, et al.
- 15 BCG Growth in XXL Clusters Lavoie, Willis, Démoclès, et al.

- 2 The Bright Cluster Sample Pacaud, Clerc, Giles, et al.
- 4 The Mass-Temperature Relation Lieu, Smith, Giles et al.
- 6 The 1000 Brightest Point Sources Fotopoulou, Pacaud, Paltani, et al.
- 8 Intracluster light in a z=0.53 Cluster Adami, Pompei, Sadibekova, et al.
- 10 Mass-K band luminosity relation Ziparo, Smith, Mulroy, et al.
- 12 Frequency of AGNs in Superclusters Koulouridis, Poggianti, Altieri, et al.
- 14 AAOmega redshifts for XXL-S Lidman, Ardila, Owers, et al.

The Bright Cluster Sample: selection ⇒ 100 brightest galaxy clusters

- Start from the pipeline extended source sample
- Perform growth curve analysis

\Rightarrow Flux limit of 3.10¹⁴ erg/s/cm² in a 1' aperture

Paper II: Pacaud, Clerc, Giles et al. (2016)

Selection function

Includes:

- Pipeline selection
- Aperture flux cut
- Flux uncertainty

The Bright Cluster Sample: XXL-100-GC

Available parameters :

- Spectroscopic <u>z</u> for 97/100
- T_{300kpc} for all from survey data
- L₅₀₀ and M_{gas}

Paper III: Giles, Maughan, Pacaud et al. (2016)

Example of XXL-100-GC clusters

XLSSC 025 at z=0.27

XLSSC 509 at z=0.63

Luminosity function

Depends on the assumed scaling relations through the estimate of the effective volume Computed from numerical derivation of the cumulative function

Redshift evolution is weak !

Weak lensing shear profiles (and NFW profile fits) from CFHTLens data for 37 clusters at z<0.6

Paper IV: Lieu, Smith, Giles et al. (2016)

XXL-100-GC: Mass distribution

$M \ge 2x10^{14}M_{\odot}$ $at \ z \ge 0.4$

Paper II: Pacaud, Clerc, Giles et al. (2016)

L₅₀₀-T_{300kpc} relation

Cosmological modelling

<u>Assumption</u>: Tinker+08 mass function, XXL scaling laws, $r_c=0.15 r_{500}$

In addition, ~10% fluctuations from error on r_c/r_{500}

Constraints on σ_8

- Tinker08 mass function
- XXL scaling laws
- β =2/3 and r_c=0.15 r₅₀₀

WMAP9 : 117 cl.

Planck15+: 143 cl.

Planck: 165 cl.

Extended Mantz likelihood fits to XXL-100

Fix all cosmological densities and H₀ to WMAP9

- Using n(L_x,z):
 - All scaling relations fixed:
 - Only prior on L_X -T:
 - L_X-T fixed, but $\Omega_{\rm m}$ free:

 σ_8 =0.807 +/- 0.018 σ_8 =0.814 +/- 0.035 $\Delta\sigma_8$ > 0.05

Large Scale Structures

A prominent cluster of 6 groups at z=0.43 (3 in XXL-100-GC)

Paper VII: Pompei, Adami, Eckert, et al. (2016)
+ Paper IX: Baran, Smolcic Milakovic et al. (2016)

Recipe to identify other similar structures (FoF like):

- Find pairs of clusters separated by less than 7 Mpc
- Add other clusters within 20 Mpc to any member

Superclusters

Paper II: Pacaud, Clerc, Giles et al. (2016)

Angular correlation function

Simulating random catalogues:

- For each cluster, select selection function map that matches its measured size/flux.
- Perform 100 realization => 10000 sources.

Conclusions

- XXL team assembling a unique multi- λ legacy data set
- First results of XXL (and X-ray maps) just issued:
 - ~ self-similar evolution of L500-T300kpc
 - Lower number density than predicted by Planck-CMB
 - Unveiling the 3d structures in the field
- Too many interesting details to describe here: Have a look at the papers in the A&A special feature !
- Next steps:
 - > full sample (release planned in ~1 year)
 - > two-point correlation function analysis (in 3D)
 - better mass-observables and selection modeling
 - > more X-ray data to be expected

Gas mass content of XXL-100-GC

Paper XIII: Eckeri, Etiori, Coupon et al. (2016)

Gas mass content of XXL-100-GC

Paper XIII: Eckeri, Ettori, Coupon et al. (2016)

LSS visualization

Credit: D. Pomarède

LSS visualization (II)

Credit: D. Pomarède

LSS visualization (II)

Credit: D. Pomarède

Selection effects

Notations

We start from the mass function dn/dM/dz in units cluster per sky area The link between M and observables O is provided by P(O|M) (e.g. a scaling relation with some scatter).

Let \tilde{O}_i be the observed (noisy) value of O_i (*i* denotes ith cluster). They are stochastically connected by the PDF $P_i(\tilde{O}|O)$.

The selection function, f_{I} , can depend on both O and \tilde{O} :

Real life number density:

$$n(O,M,z) = \Omega_{tot} P(O \mid M) \frac{dn}{dM d\Omega dz}$$

Observable number density:

$$\tilde{n}(\tilde{O},z) = \int dO \int_{M_{\min}}^{M_{\max}} f_I(O,\tilde{O}) P(\tilde{O} \mid O) n(O,M,z) dM$$

Average number of detected clusters :

$$\left\langle N_{\rm det} \right\rangle = \int_{z_{\rm min}}^{z_{\rm max}} dz \int \tilde{n} \left(\tilde{O}, z \right) d\tilde{O}$$

Likelihood for scaling relations

- Well defined bayesian methods to fit scaling relations accounting for selection function using the number counts (e.g. Mantz 2010, 2015 and Jim's talk)
- Those however imposes the total number of sources to match the predictions which might be problematic given the unsolved Planck15/clusters issues
- Here, we aonly account for the distribution in the observable space (without the overall counts):

$$L(\pi) = \prod_{i=1}^{N_{det}} P_{det}(\tilde{O}_i, z_i \mid \pi)$$

• $P(\tilde{O}_i|z,\pi)$ can be estimated from the cosmological source distribution:

$$P_{\text{det}}(\tilde{O}_i \mid z_i, \pi) = \frac{\tilde{n}(\tilde{O}_i, z \mid \pi)}{dn / dz \ (z \mid \pi)}$$

Paper II: Pacaud, Clerc, Giles et al. (2016)

Paper III: Giles, Maughan, Pacaud et al. (2016)

Likelihood models

• Pacaud et al. (2007):

Apply selection effects on the scattered L-T distribution at a given z. Use new modified P(L|T,z) as a PDF to build a likelihood model. the effect of the mass function is not included

• Mantz et al. (2010):

Start from a complete cluster population of N_{true} cluster Considers all possible ways of selecting N_{obs} clusters based on the selection function and marginalize over N_{true} .

the effect of the mass function is included

the cluster number density is included

Updated Pacaud et al. (2016):

Starting from input temperature function at a given z, then apply selection effects on the scattered L-T distribution at a given z.

Use P(L,T|z) as a PDF to build likelihood (normalized in 2D).

only the effect of the mass function is included

Pacaud vs Mantz likelihood

Paper III: Giles, Maughan, Pacaud et al. (2016)

L₅₀₀-T_{300kpc} relation

- Start from WMAP9 cosmology and M-T from Lieu et al.
- Assume $x_c = r_c/r_{500} = 0.15$ to apply selection function
- Parametrization:

$$E(z)^{\gamma_{LT}}\left(\frac{L}{L_0}\right) = A_{LT}\left(\frac{T}{T_0}\right)^{B_{LT}}$$

With $L_0 = 3 \times 10^{43} \text{ erg s}^{-1}$ $T_0 = 3 \text{ keV}$

• Fit results

Likelihood Model	A _{LT}	B _{LT}	γ_{LT}	σ_{LT}
Mantz	0.71 +/-0.10	2.74 +/-0.15	1.17 +/-0.52	0.52 +/-0.06
Pacaud	0.72 +/-0.11	2.65 +/-0.15	1.46 +/-0.80	0.48 +/-0.07

 \Rightarrow Self-similar evolution or stronger

This apparently contradicts some recent results (e.g. Reichert et al. 2011, Hilton et al. 2012, Clerc et al. 2014) Paper III: Giles, Maughan, Pacaud et al. (2016)

Comparison with REFLEX-II

Paper II: Pacaud, Clerc, Giles et al. (2016)

Systematic errors on the luminosity function

More consistency checks

The L_x -T relation preferred by the observed luminosity function

Table 6. Indirect constraints on the $L_{500}^{XXL} - T_{300kpc}$ relation parameters obtained by fitting the (L, z) number density.

Free parameters	A_{LT}	B_{LT}	γ_{LT}	
Reference	0.72	2.65	1.46	
Norm. only	$0.655^{+0.063}_{-0.069}$	2.65	1.46	
Norm.+evol	$0.63^{+0.10}_{-0.10}$	2.65	$1.61^{+0.42}_{-0.44}$	
Norm.+pow+evol	$0.72^{+0.21}_{-0.15}$	$2.83^{+0.25}_{-0.22}$	$1.22^{+0.64}_{-0.74}$	

Likelihood formulation for number counts

Unbinned likelihood:

separate model normalization and PDF of the observables

 $L(\pi) = P(\tilde{O} \mid N_{det}, \pi) P(N_{det} \mid \pi)$

• $P(\tilde{O}|N_{det},\pi)$ can be decomposed as a product of the probabilities for each cluster, namely : $\tilde{n}(\tilde{O}_i,z|\pi)$

$$P_{\rm det}(\tilde{O}_i, z) = \frac{\tilde{n}\left(\tilde{O}_i, z \mid \pi\right)}{\left\langle N_{\rm det} \right\rangle}$$

• In the simplest case, $P(N_{det})$ is a Poisson law of parameter $\langle N_{det} \rangle$:

$$L(\pi) = \frac{e^{-\langle N_{det} \rangle} \langle N_{det} \rangle^{N_{det}}}{N_{det}!} \times \prod_{i=1}^{N_{det}} P_{det}(\tilde{O}_i, z_i \mid \pi)$$

• This reduces to the same form as Mantz et al. 2010):

$$L(\pi) \propto e^{-\langle N_{det} \rangle} \times \prod_{i=1}^{N_{det}} \tilde{n}(\tilde{O}_i, z_i \mid \pi)$$

Cosmic variance

- To be fully rigorous:
 - Should account for the detailed covariance of cluster counts at different masses and position.
 - This could be significant if CV dominates over shot noise
- For XXL, CV is similar to shot noise. We can account for it to first order by replacing the Poisson term by a doubly stochastic Poisson process, i.e.:

$$P(N_{\text{det}} \mid \pi) = \int_{N_{field}} \frac{e^{-N_{field}} N_{field}^{N_{\text{det}}}}{N_{\text{det}}!} \times P(N_{field} \mid \langle N_{\text{det}} \rangle) dN_{field}$$

for paper II P(N_{field} < N_{det>}) is a suitably parametrized lognormal distribution

Weak lensing analysis

Estimating weak lensing masses from NFW fits to CFHTLens shear data

Paper IV: Lieu, Smith, Giles et al. (2016)

$Log_{10}(M_{500}E(z)) = Log_{10}(\alpha) + \beta Log_{10}(T_X)$

sample	intercept	slope	intrinsic scatter	Ν
	<i>(a)</i>	<i>(b)</i>	$(\sigma_{\inf \ln M T})$	
XXL	$13.55^{+0.16}_{-0.18}$	$1.76^{+0.37}_{-0.32}$	$0.56^{+0.19}_{-0.19}$	38
XXL+COSMOS+CCCP	$13.56^{+0.10}_{-0.08}$	$1.69^{+0.12}_{-0.13}$	$0.43^{+0.06}_{-0.06}$	95
XXL FS	$13.66^{+0.07}_{-0.07}$	1.50	$0.53^{+0.21}_{-0.12}$	38
XXL cool core	$13.44_{-0.22}^{+0.21}$	$1.88^{+0.46}_{-0.56}$	$0.67^{+0.24}_{-0.25}$	21
XXL non cool core	$14.20^{+0.44}_{-0.43}$	$0.81^{+0.70}_{-0.81}$	$0.51^{+0.26}_{-0.27}$	17
XXL undisturbed	$13.51_{-0.16}^{+0.21}$	$1.83^{+0.41}_{-0.33}$	$0.49^{+0.31}_{-0.23}$	19
XXL disturbed	$13.67^{+0.40}_{-0.49}$	$1.49^{+0.82}_{-0.89}$	$0.91^{+0.28}_{-0.32}$	19

Simple linear regressions in Log space (Kelly et al. 2007)

UNIVERSITY^{OF} BIRMINGHAM

Comparison with previous works

Paper IV: Lieu, Smith, Giles et al. (2016)

Comparison with previous works

Paper IV: Lieu, Smith, Giles et al. (2016)