HICOSMO X-ray analysis of a complete sample of galaxy clusters

Gerrit Schellenberger

Hot spots in the XMM sky: Cosmology from X-ray to Radio

> Μύκονος June 15, 2016

Ω The second se

Bonn-Cologne Graduate School of Physics and Astronomy

Smithsonian Astrophysical Observatory

- Introduction
 - Cosmology
 - HIFLUGCS
- Cosmology with HIFLUGCS
 - Data analysis
 - Total mass estimates
 - Cosmological results
 - X-ray calibration uncertainties

Cosmology and structure formation

- Energy composition of the Universe leads to structure formation scenario
 - \rightarrow Overdensities collapse due to gravity
- Today: Number density → Halo Mass Function

Total gravitating Mass

- Total mass assuming hydrostatic equilibrium
- Temperature and density profile needed

$$M_{tot}(< r) = \frac{-rk_BT}{G\mu m_p} \left(\frac{d\ln\rho_{gas}}{d\ln r} + \frac{d\ln T}{d\ln r}\right)$$

- Each cluster analyzed individually
- LM scaling relation derived self-consistently from same sample

HIFLUGCS

- Flux limited $(2 \cdot 10^{-11} \text{ erg s}^{-1} \text{ cm}^{-2})$, complete and selected from ROSAT
- 64 very bright and nearby galaxy clusters
- All HIFLUGCS clusters observed (many several times) with Chandra

64 HIFLUGCS Galaxy Clusters observed with Chandra

Removing Substructure

Substructure

$$T(r) = \frac{1}{\left(\left\{\frac{1}{[t_1(r)]}\right\}^s + \left\{\frac{1}{[t_2(r)]}\right\}^s\right)^{1/s}},$$

$$t_i(r) = T_{i,100} \left(\frac{r}{100 \text{ kpc}}\right)^{p_i}, \quad i = 1, 2.$$
(4)

2. Power laws mediated by an exponential:

$$T(r) = T_0 + t_1(r)e^{-(r/r_p)^{\gamma}} + t_2(r)\left(1 - e^{-(r/r_p)^{\gamma}}\right),$$

$$t_i(r) = T_i\left(\frac{r}{r_0}\right)^{p_i}, \quad i = 1, 2.$$
(5)

3. The Allen et al. (2001) rising profile joined to a falling temperature profile by an exponential cutoff,

Mass extrapolation

For most clusters extrapolation of temperature profile needed

Extrapolation of the measured temperature profile or NFW fit to the mass profile

Mass extrapolation

For most clusters extrapolation of temperature profile needed

Extrapolation of the measured temperature profile or NFW fit to the mass profile

Dyn. mass comparison

Do different instruments give consistent results?

Cross calibration of X-ray instruments

Temperatures

Schellenberger+2015

Other tests: ($\Omega_{\rm M}$ change)

Neutrino mass (0.02) Galaxy group incompleteness (0.06) Different extrapolations (0.05) Different radii (0.06) Non-linear LM relation (0.03) Planck & dynamical masses (< 0.005) Alternative halo mass function (< 0.005) Hydrostatic mass bias (0.005) Gas mass

Gas mass fraction

Setup	$\Omega_{\rm m}$	σ_8	$A_{ m LM}$	$B_{ m LM}$	$\sigma_{ m LM}$
HIFLUGCS + WMAP9	$0.234^{+0.010}_{-0.010}$	$0.785^{+0.014}_{-0.013}$	$0.867^{+0.054}_{-0.052}$	$1.448^{+0.056}_{-0.053}$	0.26
High-z	$0.200^{+0.065}_{-0.047}$	$0.889^{+0.088}_{-0.091}$	$0.696\substack{+0.071\\-0.068}$	$1.182^{+0.142}_{-0.131}$	0.24
Low-z	$0.150\substack{+0.039\\-0.028}$	$0.914\substack{+0.134\\-0.121}$	$1.244^{+0.107}_{-0.106}$	$1.627^{\mathrm{+0.101}}_{\mathrm{-0.100}}$	0.22
25% Groups	$0.223^{+0.033}_{-0.029}$	$0.820\substack{+0.057\\-0.052}$	$0.767^{+0.057}_{-0.056}$	$1.242^{+0.072}_{-0.069}$	0.26
50% Groups	$0.198\substack{+0.028\\-0.026}$	$0.854^{+0.058}_{-0.053}$	$0.796^{+0.059}_{-0.056}$	$1.291\substack{+0.072\\-0.070}$	0.26
80% Groups	$0.178\substack{+0.024\\-0.022}$	$0.884^{+0.054}_{-0.052}$	$0.811\substack{+0.058\\-0.058}$	$1.318\substack{+0.069\\-0.066}$	0.26
Broken Powerlaw	$0.141\substack{+0.021\\-0.019}$	$0.988\substack{+0.072\\-0.068}$	$1.254^{+0.133}_{-0.132}$	$1.697^{+0.128}_{-0.122}$	${}^{a}0.995^{+0.112}_{-0.106}$
(1 - b) = [0.7, 1]	$0.174^{+0.026}_{-0.021}$	$0.938^{+0.066}_{-0.061}$	$0.725^{+0.082}_{-0.079}$	$1.336^{+0.071}_{-0.068}$	0.26
(1 - b) = 0.8	$0.177^{+0.025}_{-0.021}$	$0.950\substack{+0.058\\-0.055}$	$0.694^{+0.054}_{-0.052}$	$1.338^{+0.070}_{-0.068}$	0.26
High- $z + (1 - b) = [0.7, 1] + WMAP9$	$0.280^{+0.023}_{-0.020}$	$0.822^{+0.021}_{-0.019}$	$0.635^{+0.089}_{-0.090}$	$1.281^{+0.123}_{-0.111}$	0.26
No disturbed	$0.213\substack{+0.034\\-0.028}$	$0.784^{+0.056}_{-0.052}$	$0.981^{+0.073}_{-0.075}$	$1.516^{+0.086}_{-0.086}$	0.26
No disturbed $+(1-b) = 0.8$	$0.224^{+0.036}_{-0.031}$	$0.828^{+0.057}_{-0.057}$	$0.837^{+0.064}_{-0.066}$	$1.524^{+0.085}_{-0.087}$	0.26
No disturbed $+ (1 - b) = [0.7, 1] + WMAP9$	$0.271\substack{+0.023\\-0.021}$	$0.816\substack{+0.021\\-0.021}$	$0.727^{+0.119}_{-0.104}$	$1.581\substack{+0.064\\-0.061}$	0.26
Planck SZ Masses	$0.234^{+0.042}_{-0.033}$	$0.790\substack{+0.051\\-0.052}$	$0.980\substack{+0.055\\-0.053}$	$1.606\substack{+0.107\\-0.095}$	$0.197\substack{+0.025\\-0.021}$
Dynamical Masses	$0.171\substack{+0.027\\-0.021}$	$0.944^{+0.063}_{-0.062}$	$0.573^{+0.068}_{-0.072}$	$1.236^{+0.079}_{-0.078}$	0.35
Bocquet DM	$0.163^{+0.024}_{-0.021}$	$0.857^{+0.041}_{-0.041}$	$0.827^{+0.056}_{-0.055}$	$1.339^{+0.069}_{-0.070}$	0.26
Bocquet Hydro	$0.171\substack{+0.024\\-0.021}$	$0.845^{+0.038}_{-0.039}$	$0.822^{+0.057}_{-0.057}$	$1.334^{+0.066}_{-0.065}$	0.26
$\sum m_{\nu} = 0.5 \mathrm{eV}$	$0.187^{+0.024}_{-0.020}$	$0.850^{+0.045}_{-0.045}$	$0.827^{+0.060}_{-0.058}$	$1.343\substack{+0.066\\-0.071}$	0.26
$\sum m_{\nu} = 1.0 \mathrm{eV}$	$0.215\substack{+0.026\\-0.023}$	$0.794^{+0.040}_{-0.039}$	$0.839^{+0.059}_{-0.059}$	$1.354^{+0.070}_{-0.069}$	0.26

