Obscured AGN

I. Georgantopoulos National Observatory of Athens

Talk Outline

Rationale: Why obscured AGN are important (especially the Compton-thick AGN)

Obscured AGN from X-ray surveys (Chandra, XMM, Swift/BAT, Nustar)

*

IR+ sub-mm methods (mid-IR colours, Spectral Energy Distributions, IR spectroscopy)

future surveys

X-ray Surveys

- X-ray surveys provide the most efficient way to detect AGN
- In the CDFS 4Ms the sky density is 20,000 sq. deg. (Xue+11) cf. with ~300/ sq. deg in SDSS (Ross+12)
 This is because X-rays probe faint luminosities and absorbed sources
 - -but see variability studies and spectroscopic studies [OIII], [NeV] e.g. Bongiorno+10, Gilli+10 -

cdfs 4Ms

see also Miyaji+15, Ranalli+15, Buchner+15, Fotopoulou+15 for recent derivations of the LF

Obscuration depends on redshift and luminosity

Powerful QSOs prefer not to be obscured !

AGN at high-z are more obscured

DISTRIBUTION OF ABSORPTION

The most obscured AGN: can X-ray surveys detect them easily ?

Even the very efficient hard X-rays have difficulties penetrating column densities <u>above</u> >10²⁴ cm⁻² Compton-thick AGN

The attenuation is because of <u>Compton scattering</u> on electrons and not because of photoelectric absorption.

This reduces the X-ray emission in the 2-10 keV band to a few percent of the intrinsic emission

What does the torus look like?

not really a compact torus. More of a cloud structure (e.g. Nekova+08) See also the Hydrodynamical simulations of Wada+08

But the most important evidence is the VLT observations which resolve the torus in nearby AGN (Jaffe+04)

Why are heavily obscured AGN important ?

They may represent a large (evasive) part of the accretion history of the Universe.

Theoretical models postulate that heavily obscured AGN represent the birth of an AGN (e.g. **Hopkins+08**)

Observational evidence of this scenario ?

Kocevski+15

Morphology of heavily obscured sources with HST (CDFS, Aegis, COSMOS)

Fraction of mergers vs. column density Nh

Why do we need the most heavily obscured AGN?

An argument often mentioned is that among the nearby AGN most are Compton-thick

Spectrum X-ray background

X-ray background population synthesis models: Comastr +95, Gilli+07, Treister+09, Ballantyne+11, Akylas+12, Ueda+14

Soltan argument: The Luminosity becomes BH mass

 $\rho_{BH} = (k_{bol}/\epsilon) (1+\langle z \rangle) I_{o}$ (Soltan82) On the basis of this Iwasawa&Fabian(1999) claimed that most accretion in the Universe is heavily obscured (assuming a value for accretion efficiency ε) Density of BH locally factor of 1.5 higher than LFluminosity function (e.g. Merloni & Heinz)

Compton -thick

Most Heavily obscured AGN in X-ray surveys (N_H~10²⁴ cm⁻²)

Ultra-hard X-ray surveys: SWIFT/BAT NuSTAR

Hard (2-10keV) X-ray surveys: Chandra and XMM

How do we find extreme obscuration?

X-ray spectroscopy

Looking for 3 features:

1. The absorption turnover

2. A flat spectrum with $\Gamma \sim 1$ indicative of reflection in the back side of the torus

3. An FeKa line with a high EW

SWIFT/BAT

SWIFT/BAT : All sky survey with coded mask imaging down to ~10⁻¹¹ erg cm-2 s-1 (14-195 keV) and getting deeper as new scans are added. Burlon+11, Ajello+13, Baumgartner+13

1210 sources with about **700** AGN.

Heavily obscured AGN can be found only by using BAT+XRT BAT only is not very effective because of the lack of soft energy coverage (two groups, Ricci et al, Akylas et al.)

Number counts + comparison with models

Note the degeneracy between the reflection component and the fraction of CT AGN in the models

NuSTAR

Alexander+13 serendipitous fields

Civano+15 1.7deg2 COSMOS: 1bona fide CT

Mullaney+15 eCDFS

Because of small number statistics ne apparent lack of CT AGN is consistent with both Gilli+07, Treister+09, Akylas+12

We must go a factor of 3 deeper hitting the confusion limit OR wait for the serendipitous CT sources

Recent Searches for CT AGN at softer energies <10keV

0.5-8 BRIGHTMAN+14 BUCHNER+15 CDF, AEGIS, COSMOS

- 2-10 CORRAL ET AL. CDFS 7 MS (IN PREP.)
- 2-10 KEV LANZUISI+15 COSMOS

XMM INITIAL SELECTION BUT XMM+CHANDRA FITS ARE PERFORMED

10 CT AGN OF WHICH 6 HAVE EW(FEKA) ~ 1 KEV

1 COMMON CT IN COSMOS BETWEEN THE BRIGHTMAN AND LANZUISI SAMPLES AT Z=0.125

7Ms search Comptonthick (Luo 2Ms catalogue)

7Ms CDFS + COSMOS vs. models

there may be a a hint for additional evolution of CT AGN with z

IR TECHNIQUES

IR CAN PROVIDE INSIGHT
ON OBSCURED OBJECTS AS THE
ABSORBED RADIATION IS
RE-EMITTED AT IR WAVELENGTHS.

In the IR you get both SFR and accretion and the task Is to separate one from the other

Spitzer/MIPS 24µm CDFS

✗ AGN SEDs✗ Lx/L6µm ratio

*** Dust Obscured Galaxies (R/24µm)**

IR spectroscopy (Si Absorption)

X-ray to 6µm (or 12µm) luminosity ratio

introduced by Alexander+08

X-ray obscuration relative to the torus emission is an excellent diagnostic as for heavily obscured AGN, <u>X-rays DECREASE while the torus emission</u> <u>remains constant.</u>

Rovilos+14 applied this technique in the WISE survey using 3XMM data

Dust obscured galaxies (DOGs)

High $f_{24\mu m}/f_R < 1000$ ratio

see e.g. Pope+08

Fiore+08, Georgantopoulos+08, Fiore+09 applied this method in the CDF.S

Some sources are detected in the X-rays: **Corral+16**

6Ms Chandra+3Ms XMM

14 sources: 9 heavily absorbed (at least 1 CT)

 F_{24}/F

Spectral Energy Distributions

SEDs may provide a more refined way to find the AGN

del Moro+2015 derive SEDs (Herschel & Spitzer) in the CDFS for the most luminous mid-IR sources ($L_{6\mu m}$ >10^{44.8}), redshift z=1-3.

From the SEDs of the luminous AGN, 70% are obscured with N_H > 10²² cm-2, some unobscured while for the non-detected ones it is assumed that they are CT.

Mid-IR spectroscopy: 9.7 Si absorption feature

NGC4945: Spitzer IRS spectra from nearby galaxies BrandI+06

Spitzer IRS observations of the 12µm sample : Wu+09

but see Goulding+12

Note that column density from τ is always lower than 10^{24} cm⁻²

The LF of obscured AGN has been extremely well defined (fraction of obscured AGN evolution with redshift, Luminosity) (e.g. Ueda+14, Buchner+14)

Statistically complete samples of CT AGN are found at both high redshift and low redshift in the last couple of years (Akylas+16, Ricci+15, Brightman+14, Buchner +14)

The number of CT AGN is rather low (~15-20% in the local Universe with the exact value depending on reflection but may evolve with redshift)

Comastri+15 point out that the local BH density is higher than previously thought. This can be explained by either non efficient accretion OR a population of very low luminosity Compton-thick AGN. These are very hard to detect even in deep surveys and they play no role to the X-ray background (remember the high density of nearby CT AGN)

Future (X-ray + IR)

eROSITA (3,000,000 AGN). A large number of heavily obscured AGN is expected even in the soft band (a few thousand). The tasks is to identify them. Combination of **ART-XC** and **eROSITA** are or eROSITA and WISE are two routes.

Till then the **3XMM** catalogue provides an invaluable resource. There are many added value products: **XMMFITCAT** provides spectra for 120,000 sources. A prerequisite is the derivation of phot-z.**ARCHES** is the obvious step to exploit this resourceJWST near IR spectroscopy to find the Si absorption feature.

JWST is a mid-IR telescope and e.g. Si $9.7\mu m$

ATHENA will be able to find a very large number of heavily obscured AGN (see white paper by the WG)

THE END

IR colours

Spitzer boxes: Donley, Stern, Lacy

comparison with X-ray Barmby+06, Georgantopoulos+08, Castelo-Mor+12 Similar boxes in WISE: Stern+12, Mateos+12 (Secrest+15)

Yan+13 propose r-[4.5] colour to select the obscured ones

The X-ray surveys have provided a good knowledge of the AGN luminosity function (LF) and its evolution (a few thousand cf. tens of thousand in the optical)

e.g. Aird+11, Aird+15, Ueda+14, Miyaji+15, Buchner+15, Ranalli+15 see also Vito+14, 15, Georgakakis+15 present the high-z (z>3) LF

Of particular interest for this talk : Buchner+15 present the LF and its evolution as a function of the column densiry

Buchner+15, AEGIS/XXL/COSMOS/CDFS

HST vs Chandra 2 Ms

Just to be fair: optical surveys can sample low luminosities using optical spectroscopy (Bongiorno+10, Heckman+09 vs Georgantopoulos+10, Gilli+10

*

Also variability studies [e.g. Vilforth+11, Palanque+10]

An underlying sea of galaxies most of which contain BH remain undetected

> N. Brandt PennState

MOLECULAR LINES AS A PROBE OF HIGHLY OBSCURED AGN

Papadopoulos+10 (observing ULIRGS from HERCULES Legacy Spitzer survey) Proposed that high Dust obscuration can be probed with CO flux ratios

but see Aalto+15

Obscuration is that high (AV~4000, NH~10²⁵) that can absorb sub-mm wavelengths !!

COMPARISON WITH MODELS: 2-10 KEV

sub-mm galaxies

These massive star-forming systems at z>2 have been proposed as sites where SFR and BH galaxy growth simultaneously take place with the majority being candidate CT sources Alexander+05 matched using radio positions

Laird+11 in the CDFN challenged these claiming a low number of AGN. Similar results were claimed in the CDF-S (based on LABOCA sub-mm sources Georgantopoulos+11 matched via 24 Spitzer) The AGN fraction was found less than 20%

Wang+13 using ALMA observations made a step forward finding an AGN fraction of 17%

