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Rationale: Why obscured AGN are important
(especially the Compton-thick AGN)

Obscured AGN from X-ray surveys (Chandra, XMM,
Swift/BAT, Nustar)

IR+ sub-mm methods (mid-IR colours, Spectral
Energy Distributions, IR spectroscopy)

future surveys




¢  X-ray surveys provide the most efficient
way to detect AGN

2¢ Inthe CDFS 4Ms the sky density is
20,000 sq. deg. (Xue+11) cf. with ~300/
sq. deg in SDSS (Ross+12)

2 ¢ This is because X-rays probe faint
luminosities and absorbed sources

-but see variability studies and
spectroscopic studies [Olll], [NeV] e.q.
Bongiorno+10, Gilli+10 -
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see also Miyaji+15, Ranalli+15, Buchner+15, Fotopoulou+15 for recent derivations of
the LF




Obscuration depends on redshift and luminosity

UEDA ET AL.
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Powerful QSOs prefer not to be obscured !

AGN at high-z are more obscured



DISTRIBUTION OF ABSORPTION

Tozzi+06
Georgantopoulos+07
using spectroscopy 1Ms CDFS

peaks at
Nh~1023 cm-2
Av~30
10-15cgs

Number|

CT- AGN
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Even the very efficient hard X-rays have difficulties penetrating column densities above
>10% cm _Compton-thick AGN

The attenuation is because

of Compton scattering on electrons and
not because of photoelectric absorption.
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This reduces the X-ray emission | | " /
in the 2-10 keV band to a few percent ‘
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What does the torus look like?

not really a compact torus.
More of a cloud structure (e.g. Nekova+08)
See also the Hydrodynamical simulations of Wada+08

But the most important evidence is the VLT observations which
resolve the torus in nearby AGN (Jaffe+04)
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Why are heavily obscured AGN important ?

They may represent a large (evasive) part of the accretion history of the
Universe.

Theoretical models postulate that heavily obscured AGN represent the birth of
an AGN (e.qg. )

> -%0-$-@
gas-rich SMG/ULIRG obscured unobscured  early-type

galaxy(s) quasar guasar galaxy

Hickox & Alexander 2012




Observational evidence of this scenario ?

Morphology of heavily obscured sources with HST
(CDFS, Aegis, COSMOS)
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Why do we need the most heavily
obscured AGN?

_ HEAO-1 A2 HED
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An argument often mentioned is that among the
nearby AGN most are Compton-thick

Spectrum X-ray background

X-ray background population synthesis models: Comastr
+95, Gilli+07, Treister+09,Ballantyne+11, Akylas+12,
Ueda+14

ExF(E) [keV s-! sr-!

Soltan argument: The Luminosity becomes BH
mass
P (kb I/a) (1+<z>)| (Soltan82)
[0}

BH =
On the basis of this Iwasoawa&Fabian(1999) claimed that

most accretion in the Universe is heavily obscured
(assuming a value for accretion efficiency ¢€)
Density of BH locally factor of 1.5 higher than

LFluminosity function (e.g. Merloni & Heinz ) Compton -thick




Most Heavily obscured AGN in X-ray
surveys (Np~1024 one2)

Ultra-hard X-ray surveys:

SWIFT/BAT
NuSTAR

Hard (2-10keV) X-ray surveys: Chandra and XMM




How do we find extreme obscuration?

Ikeda+09 6,,=30"

X-ray spectroscopy
Looking for 3 features:

1. The absorption turnover

® XMM+Chandra spe
® pn-only spec.

2. A flat spectrum with [ ~1
iIndicative of reflection in the
back side of the torus Lanzuisi+15

3. An FeKa line with a high EW




SWIFT/BAT

SWIFT/BAT : All sky survey with coded mask imaging

down to ~10-1" erg cm-2 s-1 (14-195 keV) and getting deeper as
new scans are added.

Burlon+11, Ajello+13, Baumgartner+13

1210 sources with about 700 AGN.

Heavily obscured AGN can be found only by using BAT+XRT
BAT only is not very effective because of the lack of soft energy
coverage (two groups, Ricci et al, Akylas et al.)




{MASXJ08434495
+3549421

2MASXJ08434495+3549421 XRT+BAT
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Number counts + comparison with
models

BAT LogN-LogS, this work ———
Akylas et al 2012 model, CT=12% of the total AGN, refl=5%
Akylas et al 2012 model, CT=30% of the total AGN, refl=0% - - - -
¥ Ueda et al 2014 model —-—-—-

.~

This work
-10.8 -10.6 -10.4 -10.2

Log(Fluxy4-195 kev) €rgs s’

cm2

Note the degeneracy between the reflection component and the
fraction of CT AGN in the models




NUSTAR

Alexander+13 serendipitous fields

Civano+15 1.7deg2 COSMOS: 1bona fide CT

" keV-!

Mullaney+15 eCDFS
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CT COSMOS

Because of small number statistics
e apparent lack of CT AGN is consistent with
both Gilli+07, Treister+09, Akylas+12

Energy (keV)

We must go a factor of 3 deeper hitting the confusion limit OR wait for the
serendipitous CT sources




Recent Searches for CT AGN at softer energies
<10keV

0.5-8 BRIGHTMAN+14 BUCHNER+15 CDF, AEGIS, COSMOS
2-10 CORRAL ET AL. CDFS 7 Ms (IN PREP.)
2-10 KEV LANZUISI+15 COSMOS
XMM INITIAL SeLECTION BUT XMM+CHANDRA FITS ARE PERFORMED

10 CT AGN oF WHICH 6 HAVE EW(FEKA) ~ 1 KEV

2608 7=0.125
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1 COMMON CT IN COSMOS BETWEEN
THE BRIGHTMAN AND LANZUISI
SAMPLES AT Zz=0.125
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'"Ms search Compton-
thick ( Luo 8Ms catalogue)

|




/Ms CDFS + COSMOS vs. models

CDFS

H

COSMOS data, Lanzuisi et al. 2014 -+
012 model, CT=12% of the total AGN, refl=5%
Uedz. et ¢l 2014 model
CDFS 7Ms, Corral et al 2016 in prep. < Lanzuisi
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there may be a a hint for additional evolution of CT AGN with z
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EMITTED AT IR WAVELENGTHS.

IR CAN PROVIDE INSIGHT
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AGN SEDs
Lx/L6um ratio
Dust Obscured Galaxies (R/24jum)

IR spectroscopy (Si Absorption)




INntroduced oy Alexander+os

X-ray obscuration relative to the torus emission is an excellent diagnostic

as for heavily obscured AGN, X-rays DECREASE while the torus emission
remains constant.

log[L,_ 0 wev) €reg s~
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Georgantopoulos+11

log[vL,] (6um) erg s-!

Rovilos+14 applied this technigue in the WISE survey
using 3XMM data




High f24ym/fr <1000 ratio

3

0
see e.g. Pope+08 F24/FR N
10

Fiore+08, Georgantopoulos+08, Fiore+09 applied this method in
the CDF.S 1

Some sources are detected in the X-rays: Corral+16

6Ms Chandra+3Ms XMM

14 sources: 9 heavily absorbed (at least 1 CT)

Feruglio-CT




SEDs may provide a more refined way to find the AGN

del Moro+2015 derive SEDs (Herschel & Spitzer) in the CDFS for the
most luminous mid-IR sources (Leum>10448), redshift z=1-3.

From the SEDs of the luminous AGN, 70% are obscured with Ny> 1022
cm-2 , some unobscured while for the non-detected ones it is assumed
that they are CT.
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NGC4945: Spitzer IRS
spectra from
nearby galaxies
Brandl+06

The Seyfert || Galaxy NGC 4945




but see Goulding+12

Note that column density from
T is always lower than 1024cm-2




The LF of obscured AGN has been extremely well defined (fraction of obscured
AGN evolution with redshift, Luminosity) (e.g. Ueda+14, Buchner+14)

Statistically complete samples of CT AGN are found at both high redshift and low
redshift in the last couple of years (Akylas+16, Ricci+15, Brightman+14, Buchner
+14)

The number of CT AGN is rather low (~15-20% in the local Universe
with the exact value depending on reflection but may evolve with redshift)

Comastri+15 point out that the local BH density is higher than previously thought.
This can be explained by either non efficient accretion OR a population of very low
luminosity Compton-thick AGN. These are very hard to detect even in deep surveys
and they play no role to the X-ray background (remember the high density of nearby

CT AGN)




Future (X-ray + IR)

eROSITA (3,000,000 AGN). A large number of heavily obscured AGN is expected

even in the soft band (a few thousand). The tasks is to identify them. Combination of
ART-XC and eROSITA are or eROSITA and WISE are two routes.

Till then the 3XMM catalogue provides an invaluable resource. There are
many added value products: XMMFITCAT provides spectra for 120,000
sources. A prerequisite is the derivation of phot-z. ARCHES is the obvious
step to exploit this resourceJWST near IR spectroscopy to find the Si
absorption feature.

JWST is a mid-IR telescope and e.g. Si 9.7um

ATHENA will be able to find a very large number of heavily obscured AGN
(see white paper by the WG)




THE END







bs.
A e 20| <10%
A® A O (10%<L,<10%)

1fFA®@ AOL>10% Castello-Mor+13
X-ray sources XMM/CDFS

Iog( SB.Oprr/S4.5pm )

Donley+12 box .
|°9( S5 gum>3.6um )
Colours are used as a thermometer of the dust: hot dust is
heated by the AGN

Spitzer boxes: Donley, Stern, Lacy

comparison with X-ray Barmby+06, Georgantopoulos+08, Castelo-Mor+12

Similar boxes in WISE: Stern+12, Mateos+12 (Secrest+15)

Yan+13 propose r-[4.5] colour to select the obscured ones




The X-ray surveys have provided a good knowledge of the AGN luminosity
function (LF) and its evolution (a few thousand cf. tens of thousand in the

optical)

e.g. Aird+11, Aird+15, Ueda+14, Miyaji+15, Buchner+15, Ranalli+15
see also Vito+14, 15, Georgakakis+15 present the high-z (z>3) LF

Of particular interest for this talk : Buchner+15 present the LF and its evolution as a function of th
column densiry
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Buchner+15, AEGIS/XXL/COSMOS/CDFS




HST vs Chandra 2 Ms

Just to be fair: optical surveys
can sample low luminosities
using optical spectroscopy

(Bongiorno+10, Heckman+09 vs

Georgantopoulos+10, Gilli+10 \

~

Also variability studies
[e.g. Vilforth+11, Palanque+10]

An underlying sea of galaxies

most of which contain BH remain
undetected
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MOLECULAR LINES AS A PROBE
OF HIGHLY OBSCURED AGN

but see Aalto+15

Obscuration is that high (AV~4000, NH~102%) that can absorb sub-mm wavelengths !!




COMPARISON WITH MODELS: 2-10 KEV

AN 2 kylas+12 Lanzuisi
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" Note that the Gilli model

NS gives lower numbers of
N C T AGN (2-10 keV) despite

gy the fact that it assumes
—14 —13.5 a higher fraction of CT AGN

logf(2—10keV)




These massive star-forming systems at z>2 have been proposed as
sites where SFR and BH galaxy growth simultaneously take place
with the majority being candidate CT sources

Alexander+05 matched using radio positions

Laird+11 in the CDFN challenged these claiming a low number of AGN.
Similar results were claimed in the CDF-S (based on LABOCA sub-mm sources

Georgantopoulos+11 matched via 24 Spitzer) The AGN fraction was found
less than 20%

;_ESSJO33314.3—275611 LESSJ033302.5-275643 LESSJ033243.3-275517 LESSJ033221.3-275623

Wang+13 using ALMA
observations made a step forward s
finding an AGN fraction of 17% [
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