The cosmological analysis of X-Ray cluster surveys: AspiX

> Lorenzo Faccioli Nicolas Clerc Marguerite Pierre Andrea Valotti

Context

- We want to derive cosmological constraints from X-Ray selected samples of galaxy clusters without the need for redshifts (time consuming to get), thus enabling a fast analysis
- We introduce a new method of analyzing cluster sample
- We are applying it on the XMM archive

The principle

- Use only **X-Ray signal variables**
- Top down: build synthetic XDDs (X-Ray Diagnostic Diagrams) from measured variables and compare with observed ones
- First implementation: CR-HR diagrams (Clerc et al 12a); applied on full XMM archive up to 2010 (Clerc et al 12b)
- Further developments: new variables, more accurate testing, application to larger datasets

The CR-HR distribution

[1-2] keV / [0.5-1] keV hardness ratio (HR)

100deg2

Clerc et al 12a

Clerc et al 12

Adding redshifts 3rd dimension to the diagram

Clerc et al 12a

Adding redshifts (photo-z are sufficient)

Analyzing the XMM archive

- Clerc et al 2012b: XCLASS catalogue
 - XMM archive up to May 2010
- **C1 selection**, based on X-Ray measured variables: yields a *high purity sample* (Pacaud et al. 2006)
- 850 C1 clusters in XCLASS catalogue
- **347 high S/N C1 clusters** for cosmological analysis
- Constraints on σ_{s} , Ω_{m} and Xc
- Analysis being extended to XMM archive up to August 2015

The latest development *Pierre, Valotti, Faccioli*

Work in progress

New features

- Four observables: CR HR RC Z
- Toy model to

 simulate cluster catalogues
 test the impact of errors, scatters, area
- Cash statistics minimized via
 - Nelder-Mead algorithm (Amoeba)
 - -Test the impact of **R**c
 - -Search for possible degeneracies
 - -Evaluate the method wrt to **dn/dM/dz**

Toy-model ingredients (1)

Relation	Slope	Normalisation	Scatter	Evolution
M - T	$\alpha_{MT} = 1.49$	$A_{MT} = 10^{0.46}$	20%	$\gamma_{MT} = 0*$
M - L	$\alpha_{ML} = 0.52$	$A_{ML} = 10^{0.25}$	50%	$\gamma_{ML} = 0*$
$M - R_c$	3	$X_c = 0.24*$	50%	none

Pierre et al. 2016 to be submitted

Table 1. Numerical values adopted for the cluster scaling relations An evolutionary parameter γ of 0 implements the self-similar evolution hypothesis. The * indicates parameters that are possibly let free during the cosmological analysis

Scaling laws from Arnaud et al. 2005 Pratt et al. 2009

$$\frac{M_{200}}{10^{14}/h} = A_{MT} \times \left(\frac{T}{4}\right)^{\alpha_{MT}} \times E(z)^{-1}(1+z)^{\gamma_{MT}}$$
$$\frac{M_{200}}{10^{14}/h} = A_{ML} \times \left(\frac{L}{10^{44}}\right)^{\alpha_{ML}} \times E(z)^{-1.5}(1+z)^{\gamma_{ML}}$$
$$M_{500} = \frac{4}{3}\pi R_{500}^3 \quad X_c = \frac{R_c}{R_{500}}$$

Toy-model ingredients (2)

• Assumed errors on CR, HR, Rc Either 0 or log-normal 20%

Pierre et al. 2016 to be submitted

• Assumed error on z

The C1 cluster population 10,000 deg2 M-z plane

to be submitted

Principle

Project the 2-D *dn/dM/dz* population into the 4-D *CR-HR-Rc-z* observed parameter space

The C1 cluster population 10,000 deg2 - observable space

The C1 cluster population 10,000 deg2 - observable space adding error measurements

The C1 cluster population 100 deg2 - observable space adding error measurements CR-HR CR-RC HR-RC

The C1 cluster population 10,000 deg2-observable space

Principle of ASpiX

- Compute the likelihood (minimizing the Cash statistic) of an observed XDD, by comparison with a model
- Explore likelihood space with Amoeba
- Are there strong local minima? (degeneracy in the XDD 4-D space)
- Launch 100 independent Amoeba runs with different starting points

Set of explored parameters

	fiducial	main	
• Ω _m	0.23	X	
• <i>0</i> ₈	0.83	Х	
• X _c	0.24	X	
• Y _{ML}	0.00		
• Y _{MT}	0.00		
• W _o	-1.00	X	
• W _a	0.00		

Pierre et al. 2016 to be submitted

dn/dM/dz 100 deg2, 50% error on mass as a reference case Average over 10 deg2 catalogues

Parameter	Mean	Std	
$\Omega_{_m}$	0.24	0.02	
$\sigma_{_{\! 8}}$	0.81	0.01	
X _c	0.25	0.02	
W _o	-1.00	0.10	

Caveat

The ~500 clusters are supposed to have their mass measured at 50%, even those with 50 photons

The reality

CR-HR-Rc-z

100 deg2

20% error on *CR, HR, Rc*

Average over 10x100 deg2 catalogues

Parameter	Mean	Std
$\mathbf{\Omega}_{m}$	0.23	0.01
$\sigma_{_8}$	0.82	0.01
X _c	0.24	0.01
W _o	-0.92	0.08

Better performance than dn/dm/dz

Pierre et al. 2016 to be submitted

Lifting degeneracies

Fiducial vs. recovered model for one of the 100 deg2 catalogs Red: fiducial, black: Xc 0.27 yMT 1.41 vML -0.54 w0 -0.66 wa -8,38

Degeneracy in N(m,z) space resolved in CR-HR-Rc space

Summary of the current assumptions

- Scaling relations known
- Evolution self-similar
- Scatter values in the scaling relations:
 - known
 - independent
- Selection perfectly monitored
- In the future we will explore the method under more realistic assumptions

Future plans: test on more realistic simulations

- Test on the Aardvark N body (Farahi et al 16) simulations painted with a β=2/3 model (Valotti et al. in preparation)
- Test on Cosmo OWLS hydrodynamical simulations (LeBrun et al 14) (Faccioli et al. in preparation)
 –cluster irregular shapes
 –physical modelling of the AGN

Future plans: apply AspiX to real data

- CR-HR method with photo-z applied to XCLASS sample (Ridl et al., in preparation; see also J. Ridl talk, this afternoon)
- Apply ASpiX to the *expanded XCLASS* sample (includes all XMM pointings from 2000 to August 2015); pointings already reprocessed and being analyzed
- Apply ASpix on the *full XXL sample*

Supplementrary slides

Doing cluster cosmology without masses

New developments on the HR-CR method: ASpiX

Lorenzo Faccioli Nicolas Clerc Marguerite Pierre Andrea Valotti

Reminder – Clerc et al 2012

• CR in [0.5-2] keV • HR = [1-2]/[0.5-1] MagnitudeColour

Clerc et al 12

Example: Xc-W₀ likelihood plane from the CR-HR-Rc space

Take *dn/dM/dz*, 10,000 deg2, no error on mass as a reference case

JLS_v1.1_	dndzm				
	20 best LH		10 best LH		best LH
Omega_m	0.2296	+/- 0.0003	0.2295	+/- 0.0002	0.2298
SIgma8	0.8305	+/- 0.0004	0.8305	+/- 0.0003	0.8308
Xc_0	0.2386	+/- 0.0006	0.2386	+/- 0.0005	0.2385
WO	-0.9963	+/- 0.0023	-0.9962	+/- 0.0018	-0.9990

One catalogue

One 100 deg2 catalogue

JLS_v1.1	dndzdm + error				
	20 best LH		10 best LH		best LH
Omega_m	0.2278	+/- 0.0008	0.2274	+/- 0.0007	0.2276
SIgma8	0.8221	+/- 0.0007	0.8222	+/- 0.0007	0.8219
Xc_0	0.2373	+/- 0.0010	0.2271	+/- 0.0009	0.2377
W0	-0.9386	+/- 0.0036	-0.9364	+/- 0.0026	-0.9330

Average over 10x100 deg2 catalogues

Mean error

J <u>LS_v1.1</u>	dndzdm	
	mean (2-10 best LH)	
Omega_m	0.2399	+/- 0.0178
SIgma8	0.8102	+/- 0.0099
Xc_0	0.2479	+/- 0.0234
WO	-0.9989	+/- 0.1089

One 100 deg2 catalogue

JLS_v1.1	dndzdm + error				
	20 best LH		10 best LH		best LH
Omega_m	0.2278	+/- 0.0008	0.2274	+/- 0.0007	0.2276
SIgma8	0.8221	+/- 0.0007	0.8222	+/- 0.0007	0.8219
Xc_0	0.2373	+/- 0.0010	0.2271	+/- 0.0009	0.2377
W0	-0.9386	+/- 0.0036	-0.9364	+/- 0.0026	-0.9330

Average over 10x100 deg2 catalogues

Mean_error

JLS_v1.1	dndcrdhrdrcore	
	mean (1-10 best LH)	↓
Omega_m	0.2295	+/- 0.0091
SIgma8	0.8150	+/- 0.0113
Xc_0	0.2440	+/- 0.0043
WO	-0.9161	+/- 0.0736

Preliminary conclusions

• Current accuracy predicted for 100 deg2:

- NB: There is some Amoeba imprint in these estimates
- Slightly better than dn/dM/dz with 50% mass error !
 - Sample variance not taken into account