
LAURO MOSCARDINI!
DIP.  FISICA E ASTRONOMIA, UNIBO!
LAURO.MOSCARDINI@UNIBO.IT!



Looking for                        
Baryon Acoustic Oscillations of 

Galaxy Clusters


Hot spots in the XMM sky, Mykonos, 15th-18th June 2016 

In collaboration with  
A. Veropalumbo, F. Marulli, M. Moresco & A. Cimatti 
see Veropalumbo et al. 2014, MNRAS, 442, 3275 and 
      Veropalumbo et al., 2016, MNRAS, 458, 1909 



The era of !
high-precision Cosmology


Different cosmological 
probes are converging 
towards the so-call 
concordance model:  
the flat ΛCDM model 

•  a flat Universe: Ωk=1-ΩM-ΩΛ=0 
•  a small baryonic component: 
Ωb≈5% 

•  a dominant dark energy 
component in the form of a 
cosmological constant Λ Planck Collaboration 



The era of !
high-precision Cosmology


The concordance cosmological model received a strong support from 
the recent analysis of Cosmic Microwave Background data by Planck. 



Constraining !
the cosmological parameters


H z( ) = H0 ΩM 1+ z( )3 +ΩDE 1+ z( )3 1+w( ) +Ωk 1+ z( )2⎡
⎣

⎤
⎦
1/2
≡ H0E z( )

We measure the main cosmological parameters through their 
effects on the expansion of the Universe: from the Friedmann 
equations we can derive how the Hubble parameter H(z) varies 
with redshift: 

An example for 
flat cosmologies 



Constraining !
the cosmological parameters


Different approaches are now available: 
•  standard candles 
    - measurements of dL (an integral of H(z)-1): SNIa, GRB, … 
•  standard rulers 
    - measurements of dA (an integral of H(z)-1): BAOs 
•  standard shapes  
    - deformations from perfect circles: Alcock-Paczynski test 
•  standard clocks 
    - measurement of the age of the Universe t(z) (integral of H(z)-1): 

 cosmic chronometers, like massive and passive galaxies 
•  growth of fluctuations 
    -  in GR it depends on an integral of a (different) function of 

 H(z). Crucial for testing modified gravity: CMB, clustering 
 of cosmic structures, weak lensing, cluster counts and 
 clustering, redshift-space distortions, etc. 



Standard cosmic rulers

The idea is based on the assumption that there is an object whose 
physical length is known as a function of redshift. 
By measuring the angle (Δθ) subtended by this ruler (Δχ) as a 
function of redshift we map out the angular diameter distance dA: 

Δθ =
Δχ
dA z( )

dA z( ) =
dL z( )
1+ z( )2

∝
d ʹz
H ʹz( )0

z

∫

By measuring the redshift interval (Δz) associated with this 
distance we can derive the Hubble parameter H(z): 

cΔz = H z( )Δχ



Standard cosmic rulers




What are the properties of !
an ideal standard cosmic ruler?


We must be able 
•  to calibrate it accurately over most of the age of the universe 
•  to measure it over much of the volume of the universe 
•  to measure it in a very precise way 
è  there are not cosmic objects having these properties, because 

of their non-linear (complex) evolution 
è  look for something coming from well-known physical 

processes happened in the early universe and observable in the 
distribution of cosmic objects on very large scale (because 
easier to be modeled) 

è  the baryon acoustic oscillations of the 
Cosmic Microwave Background  



Sound waves in the early Universe

•  At early times the universe was hot, dense and ionized. Photons and matter were 

tightly coupled by Thomson scattering (fluid approximation).  
•  Initial fluctuations in density and gravitational potential drive acoustic waves in 

the baryon-photon fluid with sound speed cs: compressions and rarefactions.  
•  These show up as temperature fluctuations in the CMB. 
•  There is also a component due to the velocity of the fluid: the Doppler effect. 
•  A sudden “recombination” decouples the radiation and matter, giving us a 

snapshot of the fluid at “last scattering”. 

•  These fluctuations are then projected on the sky with  λ~rlsθ or  l~krls. 
 



Our cosmic ruler: the CMB BAOs!

First “compression”, 
at kcstls=π. Max. density, 
null velocity 

Max. velocity  

First “rarefaction” 
peak at kcstls=2π 

Acoustic scale is set by the sound 
horizon at last scattering rs(zls):  
Planck measured it accurately! 

rs zls( ) =
cs z( )
H z( )zls

∞

∫ dz =147.34± 0.65Mpc

•  It can be calibrated 
accurately over most of the 
age of the universe. 

•  It can be measured over 
much of the volume of the 
universe in a very precise 
way. 

•  It is due to well-known 
physical processes 
happened in the early 
universe and observable in 
the distribution of cosmic 
objects on very large scale 
(because easier to be 
modeled) 



Our cosmic ruler: the CMB BAOs!

First “compression”, 
at kcstls=π. Max. density, 
null velocity 

Max. velocity  

First “rarefaction” 
peak at kcstls=2π 

Acoustic scale is set by the sound 
horizon at last scattering rs(zls):  
Planck measured it accurately! 

rs zls( ) =
cs z( )
H z( )zls

∞

∫ dz =147.34± 0.65Mpc



The baryon oscillations in !
the large-scale structure of the universe


Baryons contribute to the total gravitational potential: 
è  we expect to have oscillations in the matter power spectrum 

P(k) with the same scale (the sound horizon at tls); 
è  but, since the baryon are only ~15% of the total matter 

density, they will be much smaller. 

Key cosmological 
probe for the Euclid 
mission and for many 
ground-based future 
projects 





The shape of 
P(k) in pictures 

Eisenstein et al. 2007 



The BAO signatures !
in the clustering signals


A damped, almost harmonic 
sequence of small 
“wiggles” (<10%)  in the 
matter power spectrum 

An acoustic feature (ξ≈0.02) at 
~100 Mpc/h with width ~10 
Mpc/h in the two-point 
correlation function 



An example of application: !
BAOs in the SDSS BOSS DR11


Shape and position of 
the BAO peak is 
influenced by non 
linear growth of 
structures: 
reconstruction of the 
density field improves 
the distance constraint. 



The BAO signatures in the clustering signals:!
an example in the SDSS BOSS


Shape and position of the 
BAO peak is influenced by 
non linear growth of 
structures: reconstruction of 
the density field improves the 
distance constraint. 

A damped, almost harmonic 
sequence of small 
“wiggles” (<10%) in the 
matter power spectrum. 

An acoustic feature (ξ≈0.02) at 
~100 Mpc/h with width ~10 
Mpc/h in the two-point 
correlation function. 



A summary of the BAO results


Aubourg et al. 2014 



Cosmological constraints!
 from BAOs


Aubourg et al. 2014 



Cosmology with Galaxy Clusters

Galaxy clusters are an extremely powerful cosmological probe: 
•  Mass function è cosmological parameters, dark energy models 

(ΩΛ,w0,wa), neutrino mass, modified gravity, … 
•  Baryon fraction è Ωb 
•  Matter density profiles è constraints on modified gravity and 

dark matter properties 
•  Mass-concentration relation è cosmological constraints 
•  X-ray-SZ-lensing observations è constraints using DA(z) 
•  Clustering properties è growth of structures, cosmological 

parameters, tests of GR, … 



Why using Galaxy Clusters !
for BAO studies?


Galaxy Clusters represent the highest peaks in the 
matter density field 

•  They are more clustered 
than galaxies:  

    è Higher clustering 
 signal 

•  They are less affected 
by non-linear dynamics: 
è No Fingers of God 

•  They are sparser than other 
tracers:  

    è Larger error bars in 
 the correlation function 

PROs CONs 



The catalogues of galaxy clusters 

•  Sample of  ~130000 galaxy clusters (Wen, Han, Liu 2012) identified applying FoF on the 

photometric sample of SDSS DR8 
•  Area of 15000 deg2, covering 0.1< z < 0.6 
•  Cluster center è BCG angular coordinates + mean members photometric redshift 
•  Mcl≥ 6  1013 M¤ (from weak lensing scaling relation) 



The catalogues of galaxy clusters 

•  Sample of  ~130000 galaxy clusters (Wen, Han, Liu 2012) identified applying FoF on the 

photometric sample of SDSS DR8 
•  Area of 15000 deg2, covering 0.1< z < 0.6 
•  Cluster center è BCG angular coordinates + mean members photometric redshift 
•  Mcl≥ 6  1013 M¤ (from weak lensing scaling relation)  
•  Spectroscopic redshift from SDSS DR12, assigned to a cluster if observed for the BCG 



The galaxy cluster samples




Measuring !
the two-point correlation function

We use the Landy & Szalay (1993) estimator: 

ξ̂ r( ) =1+ NRR

NDD

DD r( )
RR r( )

− 2 NRR

NDR

DR r( )
RR r( )

The covariance matrix has been estimated using mock 
data or internal subsampling techniques (jackknife and/or 
bootstrap). 



CosmoBolognaLib




CosmoBolognaLib!
(Marulli, Moresco, Veropalumbo 2016, arXiv:1511.00012)


C++, Python libraries aimed at defining a common numerical 
environment for cosmological investigations of the large-scale 
structure of the Universe. 
 
Fully documented and publicly available: 
•  GitHub depository: 
https://github.com/federicomarulli/CosmoBolognaLib 
•  Tar file and documentation: 
http://apps.difa.unibo.it/files/people/federico.marulli3/
CosmoBolognaLib/ 



Measuring !
the two-point correlation function


CosmoBolognaLib!
(Marulli, Moresco, Veropalumbo 2016, 

arXiv:1511.00012)

C++, Python libraries aimed at defining a 
common numerical environment for 
cosmological investigations of the large-
scale structure of the Universe. 
 
Fully documented and publicly available: 
•  GitHub depository: 
https://github.com/federicomarulli/
CosmoBolognaLib 
 

Landy & Szalay (1993) estimator: ξ̂ r( ) =1+ NRR

NDD

DD r( )
RR r( )

− 2 NRR

NDR

DR r( )
RR r( )



Measuring !
the two-point correlation function

Problem: two kinds of distortions affect the measurement: 
•  Geometrical distortions: consequence of assuming a fiducial 

cosmology to transform angular coordinates and redshift in 
physical cartesian coordinates: 

dV = 1+ z( )2 DA
2 z( ) cz

H z( )
dΩdz ≡ DV

3dΩdz



Correcting for !
the geometrical distortions


s→ ys ≡
s

DV
fid z( )

Sanchez et al. 2012 

DV is called isotropic volume distance 



Measuring !
the two-point correlation function

Problem: two kinds of distortions affect the measurement: 
•  Geometrical distortions: consequence of assuming a fiducial 

cosmology to transform angular coordinates and redshift in 
physical cartesian coordinates: 

•  Dynamical distortions: the line-of-sight component of the 
peculiar velocity perturbs the cosmological redshift of the 
cosmic object: 

dV = 1+ z( )2 DA
2 z( ) cz

H z( )
dΩdz ≡ DV

3dΩdz

zobs = zc +
v||
c
1+ zc( )



Dynamical distortions


2dFGRS (Peacock et al. 
2001); galaxies @ z≤0.2 

VIPERS (de la Torre et al. 
2013); galaxies @ z~0.8 



The redshift-space two-point correlation 
function of galaxy clusters
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Covariance matrix

Crucial ingredient for clustering analysis: necessary for the Gaussian likelihood in 
the Monte Carlo Markov Chain technique. 
Computed with 3 different approaches: two internal (jackknife and bootstrap, one 
external (lognormal mocks). 

Ci, j =
1

Nreal. −1
ξi
k − ξ̂i( )

k=1

Nreal .

∑ ξ j
k − ξ̂ j( )



Modelling the !
two-point correlation function


ξ s( ) = b2ξDM αs( )+ A0
r2
+
A1
r
+ A2

The cluster redshift-space correlation function is assumed to follow 
the model proposed by Anderson et al. (2012): 



Modelling the !
two-point correlation function


ξ s( ) = b2ξDM αs( )+ A0
r2
+
A1
r
+ A2

The cluster redshift-space correlation function is assumed to follow 
the model proposed by Anderson et al. (2012): 

b ç bias parameter between clusters and DM (including 
the effect of redshift distortions) 
α ç parameter entirely containing the distance 
information, then used to put constraints on the 
cosmological parameters 
A0,A1,A2 ç parameters of an additive polynomial used 
to marginalise over signals caused by systematics not 
fully accounted for 
 
 



Modelling the !
two-point correlation function


PDM k( ) = Plin k( )−Pnw k( )⎡⎣ ⎤⎦exp −k2ΣNL
2 / 2( )+Pnw k( )

The DM power spectrum is modeled using the de-wiggled template 
(Einsenstein et al. 2007) 

Plin ç linear power spectrum (from CAMB) 
Pnw ç power spectrum without the BAO features (Eisenstein & 
Hu 1998) 
ΣNL ç parametrizes the non-linear broadening of the BAO peak 
 
The DM correlation function is simply the Fourier Transform of 
the DM power spectrum: 

ξDM r( ) = 1
2π 2 k2∫ PDM k( )

sin kr( )
kr

dk



Modelling the !
two-point correlation function


PDM k( ) = Plin k( )−Pnw k( )⎡⎣ ⎤⎦exp −k2ΣNL
2 / 2( )+Pnw k( )

The DM power spectrum is modeled using the de-wiggled template 
(Einsenstein et al. 2007) 

Plin ç linear power spectrum (from CAMB) 
Pnw ç power spectrum without the BAO features (Eisenstein & 
Hu 1998) 
ΣNL ç parametrizes the non-linear broadening of the BAO peak 
 



Wiggled/De-wiggled !
Power Spectrum




BAO distance constraint

The distance constraint is entirely contained in α. 
It is necessary to correct for the geometric distortions introduced 
by the assumption of a fiducial cosmology to compute the two-
point correlation: 

DV z( ) ≡ 1+ z( )2 DA
2 z( ) cz

H z( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/3

=α
DV

fid

rs
fid ⋅ rs

Two possible methods: 
•  Calibrated, when one assumes that the true value of the 

sound horizon is known from CMB (i.e. Planck) 
•  Uncalibrated, when one prefer to use Dv(z)/rs 



Significance of !
the BAO detection
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DV z( ) ≡ 1+ z( )2 DA
2 z( ) cz

H z( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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1/3

=α
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fid ⋅ rs
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Distance constraints




Cosmological constraints: ΛCDM model


Flat universe: 
Ωk =1- ΩM-ΩΛ=0 
Dark energy with eq. of state 
parameter w=-1  
è cosmological constant Λ  
 

H 2 z( ) = H0
2 ΩM 1+ z( )3 +ΩΛ
⎡
⎣

⎤
⎦

H0 = 64−8
+17 km
s ⋅Mpc

ΩM = 0.33−0.16
+0.24



Cosmological constraints: oΛCDM models


H 2 z( ) = H0
2 ΩM 1+ z( )3 +ΩΛ +Ωk 1+ z( )2⎡
⎣

⎤
⎦

Non-flat  universe: 
Ωk =1- ΩM-ΩΛ≠0 
Dark energy with eq. of state  
parameter w=-1  
è cosmological constant Λ  
 

H0 = Ν 67,20( ) km
s ⋅Mpc

Ωk = −0.01−0.33
+0.34



The Planck cosmology 
is compatible with the 
cluster BAO results 



BAO: Galaxies vs. Clusters


BGCs at the centre of galaxy clusters are a (small) 
subsample of the whole BOSS galaxy catalogue. 
What are the differences in their clustering properties and 
in the strength of the BAO signal? 



BAO: Galaxies vs. Clusters


•  Clear difference in the bias è galaxy cluster centre (BCGs) are not a random 
subsample of the whole galaxy population 

•  BAO peak very clear in the cluster correlation function despite of the largest 
measurement errors 



BAO: Galaxies vs. Clusters


The peculiar velocity term in the observed redshift generates the 
Fingers of God. These distortions have influences on the BAO scale 
too. 

zobs = zc +
v||
c
1+ zc( )



Conclusions

•  We computed the two-point correlation function for 

galaxy clusters at three different redshifts. 
•  We showed that BAO distance constraints from galaxy 

cluster clustering are possible! 
•  They have a competitive precision w.r.t. galaxy 

clustering BAO constraints. 
•  Cluster clustering shows differences in bias, FoG, NL 

w.r.t. galaxy clustering 
•  We derive cosmological constraints from distance 

redshift relation for a set of different cosmological 
scenarios. 

•  The results for cluster BAO can be used in combination 
with other cluster probes (like the mass function) 





Cosmological constraints: wCDM models


Flat universe: 
Ωk =1- ΩM-ΩDE=0  
Dark energy with generic 
eq. of state parameter w  

H 2 z( ) = H0
2 ΩM 1+ z( )3 +ΩDE 1+ z( )3 1+w( )⎡
⎣

⎤
⎦

H0 = Ν 67,20( ) km
s ⋅Mpc

ΩM = 0.38−0.14
+0.21

w = −1.06−0.52
+0.49



Cosmological constraints: owCDM models


Non-flat universe: 
Ωk =1- ΩM-ΩDE≠0 
Dark energy with generic 
eq. of state parameter w  
 

H 2 z( ) = H0
2 ΩM 1+ z( )3 +ΩDE 1+ z( )3 1+w( ) +Ωk 1+ z( )2⎡
⎣

⎤
⎦

H0 = Ν 67,2( ) km
s ⋅Mpc

ΩM = N 0.31, 0.02( )
ΩDE = 0.68−0.25

+0.44

w = −0.88−0.37
+0.24



Comparing !
galaxy and cluster BAOs


Results are consistent!  
 
Constraints from clusters 
slightly better than the 
ones from WiggleZ, 
despite of the paucity of 
the samples, while 
broader w.r.t. BOSS 
results. 



BAO: Galaxies vs. Clusters


Significance of the BAO 
detection is similar between 
the two samples. 
 
BAO feature is sharper for 
galaxy clusters (ΣNL=0 Mpc/h) 
w.r.t. galaxies (best fit ΣNL=8 
Mpc/h). 




