Looking for Baryon Acoustic Oscillations of Galaxy Clusters

LAURO MOSCARDINI DIP. FISICA E ASTRONOMIA, UNIBO LAURO.MOSCARDINI@UNIBO.IT

ALMA MATER STUDIORUM Università di Bologna

In collaboration with

A. Veropalumbo, F. Marulli, M. Moresco & A. Cimatti see Veropalumbo et al. 2014, MNRAS, 442, 3275 and Veropalumbo et al., 2016, MNRAS, 458, 1909

Hot spots in the XMM sky, Mykonos, 15th-18th June 2016

The era of high-precision Cosmology

Different cosmological probes are converging towards the so-call concordance model: **the flat ACDM model**

- a **flat** Universe: $\Omega_k = 1 \Omega_M \Omega_\Lambda = 0$
- a small baryonic component: $\Omega_b \approx 5\%$
- a dominant dark energy component in the form of a cosmological constant Λ

Planck Collaboration

The era of high-precision Cosmology

The **concordance cosmological model** received a strong support from the recent analysis of Cosmic Microwave Background data by Planck.

Constraining the cosmological parameters

We measure the main cosmological parameters through their effects on the **expansion of the Universe:** from the Friedmann equations we can derive how the **Hubble parameter H(z)** varies with redshift:

$$H(z) = H_0 \left[\Omega_M (1+z)^3 + \Omega_{DE} (1+z)^{3(1+w)} + \Omega_k (1+z)^2 \right]^{1/2} \equiv H_0 E(z)$$

An example for flat cosmologies

Constraining the cosmological parameters

Different approaches are now available:

- standard candles
 - measurements of d_L (an integral of H(z)⁻¹): SNIa, GRB, ...
- standard rulers
 - measurements of d_A (an integral of H(z)⁻¹): BAOs
- standard shapes
 - deformations from perfect circles: Alcock-Paczynski test
- standard clocks
 - measurement of the age of the Universe t(z) (integral of $H(z)^{-1}$): cosmic chronometers, like massive and passive galaxies
- growth of fluctuations
 - in GR it depends on an integral of a (different) function of H(z). Crucial for testing modified gravity: CMB, clustering of cosmic structures, weak lensing, cluster counts and clustering, redshift-space distortions, etc.

Standard cosmic rulers

The idea is based on the assumption that there is an object whose **physical length** is known as a function of redshift. By measuring the **angle** ($\Delta\theta$) subtended by this ruler ($\Delta\chi$) as a function of redshift we map out the **angular diameter distance** d_A:

$$\Delta \theta = \frac{\Delta \chi}{d_A(z)} \qquad \qquad d_A(z) = \frac{d_L(z)}{(1+z)^2} \propto \int_0^z \frac{dz'}{H(z')}$$

By measuring the redshift interval (Δz) associated with this distance we can derive the Hubble parameter H(z):

$$c\Delta z = H(z)\Delta\chi$$

Standard cosmic rulers

What are the properties of an ideal standard cosmic ruler?

We must be able

- to calibrate it accurately over most of the age of the universe
- to measure it over much of the volume of the universe
- to measure it in a very precise way
- → there are not cosmic objects having these properties, because of their non-linear (complex) evolution
- → look for something coming from well-known physical processes happened in the early universe and observable in the distribution of cosmic objects on very large scale (because easier to be modeled)

the baryon acoustic oscillations of the Cosmic Microwave Background

Sound waves in the early Universe

- At early times the universe was hot, dense and ionized. Photons and matter were tightly coupled by Thomson scattering (fluid approximation).
- Initial fluctuations in density and gravitational potential drive acoustic waves in the baryon-photon fluid with sound speed c_s: compressions and rarefactions.
- These show up as temperature fluctuations in the CMB.
- There is also a component due to the velocity of the fluid: **the Doppler effect**.
- A sudden **"recombination"** decouples the radiation and matter, giving us a snapshot of the fluid at "last scattering".

k

• These fluctuations are then projected on the sky with $\lambda \sim r_{ls}\theta$ or $l \sim kr_{ls}$.

Our cosmic ruler: the CMB BAOs!

- It can be **calibrated** accurately over most of the age of the universe.
- It can be **measured** over much of the volume of the universe in a very precise way.
- It is due to **well-known physical processes**

happened in the **early universe** and observable in the distribution of cosmic objects on very large scale (because easier to be modeled)

Acoustic scale is set by the **sound** horizon at last scattering $r_s(z_{ls})$: Planck measured it accurately!

$$r_{s}(z_{ls}) = \int_{z_{ls}}^{\infty} \frac{c_{s}(z)}{H(z)} dz = 147.34 \pm 0.65 Mpc$$

Our cosmic ruler: the CMB BAOs!

Acoustic scale is set by the **sound** horizon at last scattering $r_s(z_{ls})$: Planck measured it accurately!

$$r_{s}(z_{ls}) = \int_{z_{ls}}^{\infty} \frac{c_{s}(z)}{H(z)} dz = 147.34 \pm 0.65 Mpc$$

The baryon oscillations in the large-scale structure of the universe

Baryons contribute to the total gravitational potential:

- → we expect to have oscillations in the matter power spectrum
 P(k) with the same scale (the sound horizon at t_{ls});
- → but, since the baryon are only ~15% of the total matter density, they will be much smaller.

Key cosmological probe for the **Euclid mission** and for many ground-based future projects

Shape of P(k) in pictures

The shape of **P(k) in pictures**

Eisenstein et al. 2007

I he BAO signatures in the clustering signals

A damped, almost harmonic sequence of small **"wiggles"** (<10%) in the **matter power spectrum**

An **acoustic feature** ($\xi \approx 0.02$) at ~100 Mpc/h with width ~10 Mpc/h in the **two-point correlation function**

An example of application: BAOs in the SDSS BOSS DR11

Shape and position of the BAO peak is influenced by non linear growth of structures: **reconstruction** of the density field improves the distance constraint.

SDSS BOSS DR11 results, Anderson et al. 2014

The BAO signatures in the clustering signals: an example in the SDSS BOSS

An acoustic feature ($\xi \approx 0.02$) at ~100 Mpc/h with width ~10 Mpc/h in the two-point correlation function.

A damped, almost harmonic sequence of small "wiggles" (<10%) in the matter power spectrum.

Shape and position of the BAO peak is influenced by non linear growth of structures: **reconstruction of the density** field improves the distance constraint.

SDSS BOSS DR11 results, Anderson et al. 2014

A summary of the BAO results

Aubourg et al. 2014

Cosmological constraints from BAOs

Cosmology with Galaxy Clusters

Galaxy clusters are an extremely powerful cosmological probe:

- Mass function \rightarrow cosmological parameters, dark energy models $(\Omega_{\Lambda}, w_0, w_a)$, neutrino mass, modified gravity, ...
- **Baryon fraction** $\rightarrow \Omega_{\rm b}$
- Matter density profiles → constraints on modified gravity and dark matter properties
- Mass-concentration relation → cosmological constraints
- X-ray-SZ-lensing observations \rightarrow constraints using $D_A(z)$
- Clustering properties → growth of structures, cosmological parameters, tests of GR, ...

Why using Galaxy Clusters for BAO studies?

Galaxy Clusters represent the highest peaks in the matter density field

PROs

CONs

• They are more clustered than galaxies:

➔ Higher clustering signal

 They are less affected by non-linear dynamics:
 No Fingers of God

- They are sparser than other tracers:
 - Larger error bars in the correlation function

The catalogues of galaxy clusters

- Sample of ~130000 galaxy clusters (Wen, Han, Liu 2012) identified applying FoF on the photometric sample of SDSS DR8
- Area of **15000 deg**², covering 0.1 < z < 0.6
- Cluster center **>** BCG angular coordinates + mean members photometric redshift
- $M_{cl} \ge 6 \ 10^{13} M_{\odot}$ (from weak lensing scaling relation)

The catalogues of galaxy clusters

- Sample of ~130000 galaxy clusters (Wen, Han, Liu 2012) identified applying FoF on the photometric sample of SDSS DR8
- Area of **15000 deg**², covering 0.1 < z < 0.6
- Cluster center → BCG angular coordinates + mean members photometric redshift
- $M_{cl} \ge 6 \ 10^{13} M_{\odot}$ (from weak lensing scaling relation)
- Spectroscopic redshift from SDSS DR12, assigned to a cluster if observed for the BCG

The galaxy cluster samples

Summary of cluster samples fundamental quantities.

Sample Name	Number	Redshift Range	Median Redshift	bias
Main-GCS	12910	$0.1 \le z \le 0.3$	0.20	2.00 ± 0.05
LOWZ-GCS	42115	$0.1 \le z \le 0.43$	0.30	2.42 ± 0.02
CMASS-GCS	11816	$0.43 \le z \le 0.55$	0.50	3.05 ± 0.07

We use the Landy & Szalay (1993) estimator:

$$\hat{\xi}(r) = 1 + \frac{N_{RR}}{N_{DD}} \frac{DD(r)}{RR(r)} - 2\frac{N_{RR}}{N_{DR}} \frac{DR(r)}{RR(r)}$$

The **covariance matrix** has been estimated using mock data or internal subsampling techniques (jackknife and/or bootstrap).

CosmoBolognaLib

There is an app for that...

CosmoBolognaLib (Marulli, Moresco, Veropalumbo 2016, [arXiv:1511.00012]):

CosmoBolognaLib (Marulli, Moresco, Veropalumbo 2016, arXiv:1511.00012)

C++, Python libraries aimed at defining a common numerical environment for cosmological investigations of the large-scale structure of the Universe.

Fully documented and publicly available:

GitHub depository:

https://github.com/federicomarulli/CosmoBolognaLib

 Tar file and documentation: http://apps.difa.unibo.it/files/people/federico.marulli3/ CosmoBolognaLib/

CosmoBolognaLib (Marulli, Moresco, Veropalumbo 2016, arXiv:1511.00012)

C++, Python libraries aimed at defining a common numerical environment for cosmological investigations of the large-scale structure of the Universe.

Fully documented and publicly available:

 GitHub depository: https://github.com/federicomarulli/ CosmoBolognaLib

Landy & Szalay (1993) estimator:

$$\hat{\xi}(r) = 1 + \frac{N_{RR}}{N_{DD}} \frac{DD(r)}{RR(r)} - 2\frac{N_{RR}}{N_{DR}} \frac{DR(r)}{RR(r)}$$

Problem: two kinds of **distortions** affect the measurement:

<u>Geometrical distortions</u>: consequence of assuming a fiducial cosmology to transform angular coordinates and redshift in physical cartesian coordinates:

$$dV = \left(1+z\right)^2 D_A^2(z) \frac{cz}{H(z)} d\Omega dz = D_V^3 d\Omega dz$$

Correcting for the geometrical distortions

Problem: two kinds of **distortions** affect the measurement:

 <u>Geometrical distortions</u>: consequence of assuming a fiducial cosmology to transform angular coordinates and redshift in physical cartesian coordinates:

$$dV = (1+z)^2 D_A^2(z) \frac{cz}{H(z)} d\Omega dz = D_V^3 d\Omega dz$$

• **Dynamical distortions:** the line-of-sight component of the **peculiar velocity** perturbs the cosmological redshift of the cosmic object:

$$z_{obs} = z_{c} + \frac{v_{\parallel}}{c} \left(1 + z_{c}\right)$$

Dynamical distortions

2dFGRS (Peacock et al. 2001); galaxies @ **z≤0.2**

VIPERS (de la Torre et al. 2013); galaxies @ z~0.8

The redshift-space two-point correlation function of galaxy clusters

bias=2.00±0.05

bias=2.42±0.02

bias=3.05±0.07

Error bars from lognormal mocks; shaded area represents 68% posterior uncertainties provided by the MCMC analysis

Covariance matrix

Crucial ingredient for clustering analysis: necessary for the Gaussian likelihood in the Monte Carlo Markov Chain technique.

Computed with 3 different approaches: two internal (jackknife and bootstrap, one external (lognormal mocks).

$$C_{i,j} = \frac{1}{N_{real.} - 1} \sum_{k=1}^{N_{real.}} \left(\xi_i^k - \hat{\xi}_i \right) \left(\xi_j^k - \hat{\xi}_j \right)$$

The cluster redshift-space correlation function is assumed to follow the model proposed by Anderson et al. (2012):

$$\xi(s) = b^2 \xi_{DM}(\alpha s) + \frac{A_0}{r^2} + \frac{A_1}{r} + A_2$$

The cluster redshift-space correlation function is assumed to follow the model proposed by Anderson et al. (2012):

$$\xi(s) = b^2 \xi_{DM}(\alpha s) + \frac{A_0}{r^2} + \frac{A_1}{r} + A_2$$

b < bias parameter between clusters and DM (including the effect of redshift distortions)

α ← parameter entirely containing the distance information, then used to put constraints on the cosmological parameters

 $A_0, A_1, A_2 \leftarrow$ parameters of an additive polynomial used to marginalise over signals caused by **systematics** not fully accounted for

The DM power spectrum is modeled using the **de-wiggled** template (Einsenstein et al. 2007)

$$P_{DM}(k) = \left[P_{lin}(k) - P_{nw}(k)\right] \exp\left(-k^2 \sum_{NL}^2 / 2\right) + P_{nw}(k)$$

P_{lin} ← linear power spectrum (from CAMB)
P_{nw} ← power spectrum without the BAO features (Eisenstein & Hu 1998)

 $\Sigma_{\rm NL}$ \leftarrow parametrizes the **non-linear broadening** of the BAO peak

The DM correlation function is simply the Fourier Transform of the DM power spectrum:

$$\xi_{DM}(r) = \frac{1}{2\pi^2} \int k^2 P_{DM}(k) \frac{\sin(kr)}{kr} dk$$

The DM power spectrum is modeled using the **de-wiggled** template (Einsenstein et al. 2007)

$$P_{DM}(k) = \left[P_{lin}(k) - P_{nw}(k)\right] \exp\left(-k^2 \sum_{NL}^2 / 2\right) + P_{nw}(k)$$

P_{lin} ← linear power spectrum (from CAMB)
P_{nw} ← power spectrum without the BAO features (Eisenstein & Hu 1998)
Σ_{NL} ← parametrizes the non-linear broadening of the BAO peak

Wiggled/De-wiggled Power Spectrum

BAO distance constraint

The distance constraint is entirely contained in α .

It is necessary to correct for the **geometric distortions** introduced by the assumption of a fiducial cosmology to compute the twopoint correlation:

$$D_V(z) = \left[\left(1+z\right)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3} = \alpha \frac{D_V^{fid}}{r_s^{fid}} \cdot r_s$$

Two possible methods:

- **Calibrated**, when one assumes that the true value of the sound horizon is known from CMB (i.e. Planck)
- **Uncalibrated**, when one prefer to use $D_v(z)/r_s$

Significance of the BAO detection

Estimated values of α and significance of the BAO detection for the galaxy clusters samples and the definitions of covariance matrix.

	Sample Name	LogNormal	Jackknife	Bootstrap
α	Main-GCS LOWZ-GCS	$\begin{array}{c} 0.97 \pm 0.06 (2.7\sigma) \\ 0.99 \pm 0.03 (3.3\sigma) \end{array}$	$0.97 \pm 0.08 (2.6\sigma)$ $0.99 \pm 0.04 (2.9\sigma)$	$0.98 \pm 0.08 (2.3\sigma)$ $0.99 \pm 0.05 (2.7\sigma)$
	CMASS-GCS	$0.99 \pm 0.03 (3.5\sigma)$	$0.99 \pm 0.06 (2.6\sigma)$	$0.99 \pm 0.08 (2.1\sigma)$

Distance constraints

Z

Main-CGS

$$D_V(z=0.2)(r_s^{fid}/r_s) = 545 \pm 31 \,\mathrm{Mpc} \, h^{-1}$$

LOWZ-CGS

$$D_V(z=0.3)(r_s^{fid}/r_s) = 806 \pm 24 \,\mathrm{Mpc}\,h^{-1}$$

CMASS-CGS

$$D_V(z=0.5)(r_s^{fid}/r_s) = 1247 \pm 53 \,\mathrm{Mpc} \, h^{-1}$$

Cosmological constraints: **ACDM model**

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{M} \left(1 + z \right)^{3} + \Omega_{\Lambda} \right]$$

Flat universe: $\Omega_k = 1 - \Omega_M - \Omega_\Lambda = 0$ Dark energy with eq. of state parameter w=-1

 \rightarrow cosmological constant Λ

$$H_0 = 64_{-8}^{+17} \frac{km}{s \cdot Mpc}$$
$$\Omega_M = 0.33_{-0.16}^{+0.24}$$

Cosmological constraints: o/CDM models

Non-flat universe: $\Omega_k = 1 - \Omega_M - \Omega_\Lambda \neq 0$ Dark energy with eq. of state parameter **w=-1**

 \rightarrow cosmological constant Λ

$$H_0 = N(67, 20) \frac{km}{s \cdot Mpc}$$
$$\Omega_k = -0.01^{+0.34}_{-0.33}$$

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{M} \left(1 + z \right)^{3} + \Omega_{\Lambda} + \Omega_{k} \left(1 + z \right)^{2} \right]$$

The Planck cosmology is **compatible** with the cluster BAO results

BGCs at the centre of galaxy clusters are a (small) subsample of the whole BOSS galaxy catalogue. What are the **differences** in their clustering properties and in the strength of the BAO signal?

- Clear difference in the bias \rightarrow galaxy cluster centre (BCGs) are not a random subsample of the whole galaxy population
- **BAO peak** very clear in the cluster correlation function despite of the largest measurement errors

 $\begin{array}{lll} \mbox{Galaxies:} & \rightarrow b \approx 1.5, & D_V = 814 \pm 23 \, {\rm Mpc} \, h^{-1} \\ \mbox{Clusters:} & \rightarrow b \approx 2.4, & D_V = 805 \pm 26 \, {\rm Mpc} \, h^{-1} \end{array}$

The **peculiar velocity term** in the observed redshift generates the Fingers of God. These distortions have influences on the BAO scale too.

$$z_{obs} = z_{c} + \frac{v_{\parallel}}{c} \left(1 + z_{c}\right)$$

Conclusions

- We computed the **two-point correlation function for galaxy clusters** at three different redshifts.
- We showed that BAO distance constraints from galaxy cluster clustering are possible!
- They have a **competitive precision** w.r.t. galaxy clustering BAO constraints.
- Cluster clustering shows **differences** in bias, FoG, NL w.r.t. galaxy clustering
- We derive **cosmological constraints** from distance redshift relation for a set of different cosmological scenarios.
- The results for cluster BAO can be used **in combination** with other cluster probes (like the mass function)

Cosmological constraints: wCDM models

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{M} (1+z)^{3} + \Omega_{DE} (1+z)^{3(1+w)} \right]$$

Flat universe: $\Omega_k = 1 - \Omega_M - \Omega_{DE} = 0$ Dark energy with generic eq. of state parameter w

$$H_0 = N(67, 20) \frac{km}{s \cdot Mpc}$$
$$\Omega_M = 0.38^{+0.21}_{-0.14}$$
$$w = -1.06^{+0.49}_{-0.52}$$

Cosmological constraints: owCDM models

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{M} (1+z)^{3} + \Omega_{DE} (1+z)^{3(1+w)} + \Omega_{k} (1+z)^{2} \right]$$

Non-flat universe: $\Omega_k = 1 - \Omega_M - \Omega_{DE} \neq 0$ Dark energy with generic **eq. of state parameter w**

$$H_{0} = N(67,2) \frac{km}{s \cdot Mpc}$$
$$\Omega_{M} = N(0.31,0.02)$$
$$\Omega_{DE} = 0.68^{+0.44}_{-0.25}$$
$$W = -0.88^{+0.24}_{-0.37}$$

Comparing galaxy and cluster BAOs

Results are consistent!

Constraints from clusters slightly better than the ones from WiggleZ, despite of the paucity of the samples, while broader w.r.t. BOSS results.

Significance of the BAO detection is similar between the two samples.

BAO feature is sharper for galaxy clusters (Σ_{NL} =0 Mpc/h) w.r.t. galaxies (best fit Σ_{NL} =8 Mpc/h).

