Black holes in the cosmic web: The big picture of AGN and large-scale structure

Dartmouth

Ryan C. Hickox

Hot Spots in the XMM Sky Mykonos 15 June 2016

And now for something different...

AGN research at Dartmouth

PhD students:

Mackenzie Jones

McKinley Brumback

Vivyan Yan

Undergrads:

Nicky Golini, Meg Lane, Parker Gardner, Raphael Hviding, Ana Colon, Emily Golitzin

Postdocs:

Mike DiPompeo

Lauranne Lanz (starting fall 2016)

Former members:

Francesca Civano (Yale/CfA), Kevin Hainline (Steward JWST/NIRCam team), Chien-Ting Chen (Penn State)

Sloan Digital Sky Survey

Miguel A Aragon (JHU), Mark Subbarao (Adler P.), Alex Szalay (JHU)

10 hydrogen bombs per™™second for every grainof sand on Earth!

A hydrogen bomb produces 10²⁴ erg of energy There are 10²² grains of sand on Earth

The big question:

How is black hole growth connected to the growth of galaxies and large-scale structures?

Why study AGN clustering?

BLACK

HOLE

DARK MATTER HALO Measure halo mass via clustering Learn about cosmological evolution

HOST

GALAXY

Clustering tells us how AGN populate dark matter halos

31.25 Mpc/h

This is **amazing**

Miyaji et al. (2011)

Some context: Galaxies and halos $M_{halo} \sim 10^{13} M_{\odot}$

The simplest AGN clustering measurements: Optical quasars

Ross et al. (2009) , too many other references to list here!

Optical quasars reside in halos of ~constant mass with redshift

Optical quasars re:

Quasars and powerful starbursts occupy the same halos

What about other AGN populations?

What about other AGN populations?

High-Eddington, radiative AGN — X-ray, Infrared, optical/UV — are found in starforming halos

Low-Eddington, mechanical AGN — radio — are found in massive, passive halos

Redshift

AGN are in general clustered **consistently to matched host galaxies**

Mendez et al. (2015)

AGN clustering depends strongly on **black hole mass**, not on **Eddington ratio**

Krumpe et al. (2015)

How to explain this? Importance of **stochasticity** in the AGN population

Hickox et al. (2014)

Must think of AGN in terms of **probability** distributions

The AGN Eddington ratio distribution

How likely is an black hole to be active as a function of L/LEdd?

The AGN halo occupation distribution

How likely is a DM halo to host an AGN as a function of **halo mass**? Are AGN primarily in **central** or **satellite** halos?

The conditional luminosity function

What is the **luminosity/Eddington ratio distribution** as a function of **halo mass**?

Ballantyne (2016a,b)

New AGN clustering techniques: Redshift probability functions

New AGN clustering techniques: Cross-correlation with CMB lensing

Maybe things not quite so simple?

Maybe things not quite so simple?

Maybe things are not quite so simple?

Clustering dependence on **obscuration**?

Luminous IR-selected obscured quasars appear to have on average **stronger clustering** and thus **higher halo masses** and **longer lifetimes**

DiPompeo et al. (2015b)

A simple toy model for obscured AGN clustering

A simple toy model for **obscured AGN clustering**

The future: Understand selection effects!

Mendez et al. (2015)

Populate galaxy formation model with AGN and model the SEDs!

Ph.D. thesis project for M. Jones

Why study AGN clustering?

BLACK

HOLE

DARK MATTER HALO Measure halo mass via clustering Learn about cosmological evolution

HOST

GALAXY

The future: New large-scale AGN surveys

Large Chandra/XMM surveys

Athena

4MOST sky coverage 5 years survey simulation (4FS, MPE)

Euclid

WFIRST

Ideas to take away

1. AGN clustering provides a **powerful probe of the cosmic** evolution of black holes

2. Growth of the most massive black holes as quasars occurs most prominently in **halos of ~10¹² solar masses**, where star formation is most efficient

3. To first order, AGN activity appears to be **stochastic** and clustering simply follows the scaling relations of the host galaxies, however there are some interesting complications (for example with **obscuration**)

4. **New techniques** and **large surveys** will dramatically increase the power of AGN clustering studies — the **future is bright!**

Thanks to

