Code performances in subsonic flows of
an SPH scheme based on a matrix
approach (Integral Approximation)

ology from X-ray to Radio




ded that N-body/hydrodynamical

ully used to model their evolution
s well known that there are inconsistencies
2 results (core entropies) of non-radiative
ons predicted using SPH and AMR codes




* Suppression of fluid-mixing at fluid interfaces —> unable to follow the
growth of Kelvin-Helmholtz (KH) instabilities and others

« Zeroth-order errors in the momentum equation due to discreteness
effects —> noise —> relevant in subsonic flows

sesses very good conservation

IS ITPOSSIBILE TO RESCUE SPH ?
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CONSISTENCY ERRORS IN SPH
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Discreteness errors are introduced for finite values of Nand N




The errors depend on the particle distribution and impact on
the Euler equations, this is the so called E, error (Read + 10)




Pi
If N, is kept fixed when N —> oo the errors will produce noise which will
dominate in the presence of cold flows

A naive approach would be to modify the equations so to have ‘exact’
gradients, but this will destroy the conservation properties of the
Lagrangian (Price 12)

If N, becomes large, for certain kernel choices there will be
instabilities (B-splines). It is nhow common practice to use Wedland kernels




GRADIENTS THROUGH INTEGRALS (Garcia-Senz +12)
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Because of the approximation Q2 for linear functions gradient estimates
are no longer exact , but Q2 is crucial fo ensure gradient antisymmetry in
the pair ij and thus conservation properties

ully tested by Garcia-Senz + 12, Rosswog 15




Here we present a suite of hydrodynamical tests
aimed at exploring the performances of IA-SPH
in subsonic flows

Specifically, we consider:
* The Gresho-Chan vortex problem
* Driven subsonic turbulence




The Gresho-Chan vortex problem

A fluid is set in differential rotation with o =1
Pressure gradients are balanced by centrifugal forces
The fluid is stationary with V,(R)

Sampling (EO) errors —> noise —> particle disorder
—>» AV —> transport of angular momentum —>» very
difficult for SPH to keep V _(R) unaltered

s arranged in a HCP lattice
) L yQ



The velocity and pressure profiles are
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MAIN RESULTS

« TA-SPH: V (R) ~ analytical solution even
for M «l1

« convergence rate L1(N) ~ 1/N much better
than standard and close to that of mesh codes




SUBSONIC TURBULENCE

SPH simulations of driven subsonic turbulence show velocity power spectra
P(k) with a very narrow inertial range ( P(k) <k™* , Kolgomorov scaling )
when compared against spectra extracted from Eulerian simulations
(Bauer & Springel 12 =BS12 ) or Lagrangian-FV codes ( Hopkins 15, Gizmo}

astrophysical

2 problem but does not solve

The origin of the difficulties is due to SPH gradient errors
velocity noise ——  higher impact as Mach number —>» 0




Here we run a set of simulations using the same IC of previous authors
(BS12, Price 12, Hopkins 15, Zhu+15)

We consider an isothermal gas in a periodic 3D box with
L = =
Vm =0

Turbulence is driven by adding to the momentum equation an external
stochastic force @444, af each step with power spectrum

P(k) [@stir] o< k=5/3

The phases are drawn from an Ornstein-Uhlenbeck (UO) process

Tnil = fxp+ov1— f?z,
=t/ 2z, Gaussian



We enforce a pure solenoidal driving by applying an Helmholtz decomposition

_*

a(k,t) =blk,t) —k(b-k)/k2 @ k=0

For the driving parameters see BS12

The power spectrum is normalized so that M ~ 0.25 - 0.3 after
steady-state is reached (1t > 5)

Our IC set-up consists of a HCP lattice with  N° = 647, 1287, 256°

We measure the velocity power spectrum
E(k) = 2nk2P(k) < ol(K)o(k) >= dp(k — k)P(k)

by averaging between t=5 and t=25

For incompressible turbulence we expect E (k) oc k'®
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RESULTS

« standard SPH: E(k) behaviour in line with previous results
- very small inertial range

- decline as k gets higher , presence of a minimum

- turnaround and increase as k>k . (N)

« By contrast, IA-SPH exhibits an intertial range which covers almost
a decade in k
- spectra are now in accord with results from mesh runs
- the improvement is dramatic and confirms the effectiveness
of the IA approach to almost eliminate gradient errors




CONCLUSIONS

The results of our tests demonstrate that incorporating the TA
method in SPH drastically reduces zeroth-order errors

We find the IA-SPH formulation to give very good result in the
modeling of subsonic flows, outperforming standard SPH

Moreover, for the tests presented here, in ferms of accuracy the
code behavior can be considered competitive to that of other
numerical schemes recently proposed

The new TA-SPH scheme can then be used in many astrophysical
problems where subsonic flows have a significant impact

For example in galaxy clusters, where turbulence adds a
contribution to the ICM pressure and affects mass estimates




