Code performances in subsonic flows of an SPH scheme based on a matrix approach (Integral Approximation)

R. Valdarnini (SISSA)

HOT SPOTS IN THE XMM SKY : Cosmology from X-ray to Radio

Mykonos, June 2016

Introduction

- In the hierarchical scenario galaxy clusters are the most recent and massive objects known in the universe
- The dependency of their properties on cosmological parameters renders these objects very useful as cosmological probes
- Upcoming X-ray (eROSITA) and SZ cluster surveys (ACT/SPT,Planck) will provide multi-wavelength informations complementary to CMB and SNe data
- It will be possible to fully exploit these data and to put constraints on cosmological parameters (dark energy EOS ,m, ,) provided that N-body/hydrodynamical codes can be faithfully used to model their evolution
- However, it is well known that there are inconsistencies between the results (core entropies) of non-radiative simulations predicted using SPH and AMR codes

DIFFICULTIES WITH SPH

- These discrepancies are part of a more general set of problems which are present in standard SPH
- In several hydrodynamical test cases the SPH results are inconsistent with those found using mesh-based codes (see refs in Hopkins 15)

There are two distint problems which affects standard SPH

- Zeroth-order errors in the momentum equation due to discreteness effects \rightarrow noise \rightarrow relevant in subsonic flows

Because SPH is a Lagrangian code it possesses very good conservation and resolution properties

IS IT POSSIBILE TO RESCUE SPH ?

A partial list of recently proposed SPH variants:

Alternative (pressure based) SPH equatons: Read +10, Hopkins 13, Saitoh & Makino 13, Hu +14

Godunov-SPH : Inutsuka 02, Cha +10, Murante + 11

Alternative switches: Read & Hayfield 10

Artificial Conductivity (AC): Wadsley +08, Price 08, V12, Huber +11, Beck + 16

SPH COMPETITORS:

Moving-mesh codes (Arepo): Springel 10, Pakmor +16

Lagrangian - Godunov FV (Gizmo) : Hopkins 15

AMR & Garlekin : Schaal +15

CONSISTENCY ERRORS IN SPH

In SPH a field quantity is smoothed through a convolution with a kernel function $W(\vec{x})$ $A_s(\vec{x}) = \int A(\vec{x}')W(|\vec{x}' - \vec{x}|, h)d^3x'$

For a set of N points integrals are replaced by summations:

$$A_d(\vec{x}_i) = \sum_k \frac{m_k}{\rho_k} A_k W(|\vec{x}_k - \vec{x}_i|, h_i)$$

N particles , N_{nb} neighbors, W=0 if $|\vec{x}_k-\vec{x}_i|>\zeta h_i$

The continuum is recovered in the limit $N \to \infty$ $N_{nb} \to \infty$ $h_i \to 0$ (Zhu + 15)

Discreteness errors are introduced for finite values of N and N_{nb}

We Taylor expand $A(ec{x}_k)$ around $ec{x}_i$:

$$A_{i} = \sum_{k} \frac{m_{k}}{\rho_{k}} A_{k} W_{ik} = A_{i} \sum_{k} \frac{m_{k}}{\rho_{k}} W_{ik} + \vec{\nabla} A_{i} \cdot \sum_{k} \frac{m_{k}}{\rho_{k}} (\vec{x}_{k} - \vec{x}_{i}) W_{ik} + O(h^{2})$$

For a costant function, the conditions

$$\begin{cases} \sum_{k} \frac{m_k}{\rho_k} W_{ik} & \simeq 1\\ \sum_{k} \frac{m_k}{\rho_k} (\vec{x}_k - \vec{x}_i) W_{ik} & \simeq 0 \end{cases}$$

must be satisfied

The errors depend on the particle distribution and impact on the Euler equations, this is the so called E_0 error (Read + 10)

In SPH the Euler equations become

$$\begin{cases} \frac{d\rho_i}{dt} \simeq -\rho_i (\mathcal{R}_i \vec{\nabla}) \cdot \vec{v}_i + O(h) \\ \frac{d\vec{v}_i}{dt} \simeq -\frac{P_i}{h\rho_i} \vec{E}_i^0 - \frac{(\mathcal{V}_i \vec{\nabla}) P_i}{\rho_i} + O(h) \end{cases}$$

where
$$\mathcal{R}_i, \; \mathcal{V}_i \simeq \mathcal{I}$$
 and

$$\vec{E_i}^0 = \sum_j \frac{m_j}{\rho_j} \left[\frac{\rho_i}{\rho_j} + \frac{\rho_j}{\rho_i} \right] h_i \vec{\nabla}_i \bar{W}_{ij}$$

If N_{nb} is kept fixed when $N \to \infty$ the errors will produce noise which will dominate in the presence of cold flows

A naive approach would be to modify the equations so to have 'exact' gradients, but this will destroy the conservation properties of the Lagrangian (Price 12)

If N_{nb} becomes large, for certain kernel choices there will be instabilities (B-splines). It is now common practice to use Wedland kernels

GRADIENTS THROUGH INTEGRALS (Garcia-Senz +12)

Let us define

$$I_{\alpha} = \int \left[f(\vec{x}') - f(\vec{x}) \right] (\vec{x}' - \vec{x})_{\alpha} W(|\vec{x}' - \vec{x}|, h) d^3 x'$$

by Taylor expanding $f(\vec{x}')$

$$f(\vec{x}') - f(\vec{x}) \simeq (\vec{x}' - \vec{x}) \cdot \vec{\nabla}f + h.o.t.$$

we define

$$\tau_{\alpha\beta} = \int (x'_{\alpha} - x_{\alpha})(x'_{\beta} - x_{\beta})W(|\vec{x}' - \vec{x}|, h)d^3x'$$

so that we have now

$$I_{\alpha} \simeq \tau_{\alpha\beta} (\vec{\nabla} f)_{\beta} \to (\vec{\nabla} f)_{\alpha} = [\tau]_{\alpha\beta}^{-1} I_{\beta}$$

In SPH the above equations become

$$\tau_{\alpha\beta}(i) = \sum_{j} \frac{m_{j}}{\rho_{j}} (x_{j} - x_{i})_{\alpha} (x_{j} - x_{i})_{\beta} W_{ij}(h_{i})$$

$$\equiv \sum_{j} \frac{m_{j}}{\rho_{j}} \Delta_{\alpha}^{ji} \Delta_{\beta}^{ji} W_{ij}(h_{i})$$

To evaluate
$$I_{\alpha}$$
 we now assume

$$Q_2: \quad \sum_k m_k (\vec{x}_k - \vec{x}_i) W_{ik}(h_i) \simeq 0$$

In such a case

$$I_{\beta}(i) = \sum_{k} \frac{m_{k}}{\rho_{k}} f_{k} \Delta_{\beta}^{ki} W_{ik}(h_{i})$$

It can be shown that standard SPH equations are replaced according to the prescriptions

$$\begin{cases} \left[\nabla_i W_{ik}(h_i)\right]_{\alpha} & \to \quad \sum_{\beta} C_{\alpha\beta}(i) \Delta_{\beta}^{ki} W(r_{ik}, h_i) \\ \left[\nabla_i W_{ik}(h_k)\right]_{\alpha} & \to \quad \sum_{\beta} C_{\alpha\beta}(k) \Delta_{\beta}^{ki} W(r_{ik}, h_k) \end{cases}$$

where
$$\mathcal{C}=\mathcal{T}^{-1}$$

Because of the approximation Q2 for linear functions gradient estimates are no longer exact , but Q2 is crucial to ensure gradient antisymmetry in the pair ij and thus conservation properties

The new scheme has been carefully tested by Garcia-Senz + 12, Rosswog 15

Here we present a suite of hydrodynamical tests aimed at exploring the performances of IA-SPH in subsonic flows

Specifically, we consider:

- The Gresho-Chan vortex problem
- Driven subsonic turbulence

The Gresho-Chan vortex problem

A fluid is set in differential rotation with $\rho = 1$ Pressure gradients are balanced by centrifugal forces The fluid is stationary with $V_{\varphi}(R)$

Sampling (EO) errors \rightarrow noise \rightarrow particle disorder $\rightarrow AV \rightarrow$ transport of angular momentum \rightarrow very difficult for SPH to keep $V_{\varphi}(R)$ unaltered

Initial conditions set-up : NxNx16 particles arranged in a HCP lattice - periodic BC $0 \le x, y < 1$ $r = \sqrt{x^2 + y^2}$

(AV=Artificial Viscosity)

The velocity and pressure profiles are

$$egin{aligned} v_{\phi}(r) &= egin{cases} 5r & 0 \leq r \leq 0.2 \ 2-5r & 0.2 \leq r \leq 0.4 \ 0 & 0.4 \leq r \end{aligned} egin{aligned} P_0 &= (\gamma M^2)^{-1} \ \gamma &= 5/3 \ M &= 0.34 & P_0 \simeq 5 \end{aligned} \ P(r) &= P_0 + egin{cases} 12.5r^2 & 0 \leq r \leq 0.2 \ 12.5r^2 + 4 - 20r + 4ln(5r) & 0.2 \leq r \leq 0.4 \ 2(ln(2)-1) & 0.4 \leq r \end{aligned}$$

The standard case is M=0.34 - errors are guantified using the L1 norm

$$L1(v_{\phi}) = \frac{1}{N_b} \sum_{i}^{N_b} \left| \overline{v}_{\phi}(i) - v_{\phi}(r_i) \right|$$

We next show :

- Velocity profiles at t=1 M=0.34 N=128 for different kernels (a)
- Convergence rate L1 vs N, t=1 M=0.34 std SPH + IA (b)
- Velocity profiles at t=3M for $M = \{0.02, 0.05, 0.1, 0.34\}$ (c)

Arepo (Springel 10)

MAIN RESULTS

- IA-SPH : $V_{\varphi}(R)$ ~ analytical solution even for M <<1
- convergence rate L1(N) ~ 1/N much better than standard and close to that of mesh codes

SUBSONIC TURBULENCE

SPH simulations of driven subsonic turbulence show velocity power spectra P(k) with a very narrow inertial range ($P(k) \propto k^{-5/3}$, Kolgomorov scaling) when compared against spectra extracted from Eulerian simulations (Bauer & Springel 12 =BS12) or Lagrangian-FV codes (Hopkins 15, Gizmo)

Given the importance of subsonic turbulence in many astrophysical problems, this is a serious shortcoming of SPH

Improving the AV scheme alleviates the problem but does not solve it (Price 12)

The origin of the difficulties is due to SPH gradient errors \longrightarrow velocity noise \longrightarrow higher impact as Mach number \longrightarrow

Here we run a set of simulations using the same IC of previous authors (BS12, Price 12, Hopkins 15, Zhu+15)

We consider an isothermal gas in a periodic 3D box with

$$egin{cases} L=1&
ho=1\ \gamma=1&c_s=1\ ec{V}_{in}=0 \end{cases}$$

Turbulence is driven by adding to the momentum equation an external stochastic force \vec{a}_{stir} at each step with power spectrum

$$P(k)\begin{bmatrix} \vec{a}_{stir} \end{bmatrix} \propto k^{-5/3}$$

$$P(k) \neq 0 \qquad k_{min} = 2\pi/L \le k \le 2k_{min}$$

The phases are drawn from an Ornstein-Uhlenbeck (UO) process

$$\begin{array}{rcl} x_{n+1} &=& fx_n + \sigma\sqrt{1 - f^2}z_n \\ < x_n >= 0 & & < x_{n+1}x_n >= \sigma^2 f \\ f = e^{-dt/t_s} & & z_n \ Gaussian \end{array}$$

We enforce a pure solenoidal driving by applying an Helmholtz decomposition

$$\vec{a}(k,t) = \vec{b}(k,t) - \vec{k}(\vec{b}\cdot\vec{k})/k^2 \qquad \vec{a}\cdot\vec{k} = 0$$

For the driving parameters see BS12

The power spectrum is normalized so that M \sim 0.25 - 0.3 after steady-state is reached ($t \ge 5$)

Our IC set-up consists of a HCP lattice with $N^3 = 64^3$, 128^3 , 256^3

We measure the velocity power spectrum

 $E(k) = 2\pi k^2 \mathcal{P}(k) \qquad < \vec{\tilde{v}}^{\dagger}(\vec{k}') \vec{\tilde{v}}(\vec{k}) >= \delta_D(\vec{k}' - \vec{k}) \mathcal{P}(k)$

by averaging between t=5 and t=25

For incompressible turbulence we expect $E(k) \propto k^{-5/3}$

2D maps of density (bottom), velocity (middle), ensthropy (top) N=128 t=50 z=L/2 left :std SPH right : IA

RESULTS

- standard SPH: E(k) behaviour in line with previous results
 - very small inertial range
 - decline as k gets higher , presence of a minimum
 - turnaround and increase as $k \ge k_{turn}(N)$
 - By contrast, IA-SPH exhibits an intertial range which covers almost a decade in k
 - spectra are now in accord with results from mesh runs
 - the improvement is dramatic and confirms the effectiveness of the IA approach to almost eliminate gradient errors

CONCLUSIONS

- The results of our tests demonstrate that incorporating the IA method in SPH drastically reduces zeroth-order errors
- We find the IA-SPH formulation to give very good result in the modeling of subsonic flows, outperforming standard SPH
- Moreover, for the tests presented here, in terms of accuracy the code behavior can be considered competitive to that of other numerical schemes recently proposed
- The new IA-SPH scheme can then be used in many astrophysical problems where subsonic flows have a significant impact
- For example in galaxy clusters, where turbulence adds a contribution to the ICM pressure and affects mass estimates