next up previous contents index
Next: ÓÖÁËÌÁ Up: ÔÕÐÏÉ NEWTON-COTES Previous: ÔÕÐÏÉ NEWTON-COTES   Contents   Index

ÓÖÁËÌÁ

Ôï óöÜëìá óôïí ðñïóåããéóôéêü õðïëïãéóìü ôïõ ïñéóìÝíïõ ïëïêëçñþìáôïò ëüãù ôçò áíôéêáôÜóôáóçò ôçò óõíÜñôçóçò $f(x)$ ìå ôï óõìðôùôéêü ðïëõþíõìï $P(x)$ åßíáé:

\begin{displaymath}
f(x)-P(x)= \frac{1}{2} s(s-1) h^2 f''(\xi) \quad \mbox{ãéá} \quad
x_0\leq \xi \leq x_1
\end{displaymath} (155)

üðïôå ôï óöÜëìá óôçí ðñïçãïýìåíç ðñïóåããéóôéêÞ ïëïêëÞñùóç õðïëïãßæåôáé áðü ôçí ïëïêëÞñùóç ôïõ ðáñáðÜíù óöÜëìáôïò, äçëáäÞ
$\displaystyle E$ $\textstyle =$ $\displaystyle \int_{x_0}^{x_1} \frac{1}{2}s(s-1) h^2 f''(\xi) dx =
\frac{h^3}{2}
\int_{s=0}^{s=1} f''(\xi) ds$  
  $\textstyle =$ $\displaystyle h^3 f''(\xi_1)\left(\frac{s^3}{6}-\frac{s^2}{4}\right)_0^1
=-\frac{1}{12}h^3 f''(\xi_1)$ (156)

üðïõ $\xi_1 \in [x_0,x_1]$.


Óõìðôùôéêü ðïëõþíõìï 2ïõ âáèìïý

Áêïëïõèþíôáò ôçí ðñïçãïýìåíç äéáäéêáóßá âñßóêïõìå üôé:

$\displaystyle \int_{x_0}^{x_2}f(x)dx$ $\textstyle \rightarrow$ $\displaystyle \int_{x_0}^{x_2}P_2(x_s)dx =
\int_{x_0}^{x_2} \left(f_0+s\Delta f_0
+\frac{1}{2}s(s-1)\Delta^2 f_0 \right)dx$  
  $\textstyle =$ $\displaystyle h\int_{s=0}^{s=2} \left(f_0+s\Delta f_0
+\frac{1}{2}s(s-1)\Delta^2 f_0 \right)ds$  
  $\textstyle =$ $\displaystyle h\left(2f_0+2\Delta f_0+\frac{1}{3}\Delta^2 f_0 \right)$  
  $\textstyle =$ $\displaystyle \frac{h}{3}\left(f_0+4f_1+f_2 \right)$ (157)



Kostas Kokkotas 2005-06-13